Graphe parfaitEn théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Morphisme de graphesUn morphisme de graphes ou homomorphisme de graphes est une application entre deux graphes (orientés ou non orientés) qui respecte la structure de ces graphes. Autrement dit l'image d'un graphe dans un graphe doit respecter les relations d'adjacence présentes dans . thumb|alt=Un homomorphisme entre deux graphes|Le graphe de gauche se projette dans le graphe de droite, par exemple de cette façon là Si et sont deux graphes dont on note les sommets V(G) et V(H) et les arêtes E(G) et E(H), une application qui envoie les sommets de G sur ceux de H est un morphisme de graphes si : , .
Problème des mariages stablesvignette|Algorithme de Gale Shapley. En mathématiques, informatique et économie, le problème des mariages stables consiste à trouver, étant donné n hommes et n femmes, et leurs listes de préférences, une façon stable de les mettre en couple. Une situation est dite instable s'il y a au moins un homme et une femme qui préféreraient se mettre en couple plutôt que de rester avec leurs partenaires actuels (Dupont préfère à , et préfère Dupont à Durand). Ce problème a des applications en économie, en théorie des jeux et en physique statistique.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Coloration de listevignette|301x301px| Une instance de coloration de liste du graphe biparti complet K 3,27 avec trois couleurs par sommet. Pour tout choix de couleurs des trois sommets centraux, l'un des 27 sommets extérieurs ne peut être coloré, ce qui montre que le nombre chromatique de liste de K 3,27 est au moins quatre. En théorie des graphes, la coloration de liste est une coloration des sommets d'un graphe où la couleur de chaque sommet est restreinte à une liste de couleurs autorisées.
Coloration fractionnairedroite|vignette| 5: 2-coloration du graphe dodécaédrique. Il n'existe pas de 4: 2-coloration de ce graphe. En théorie des graphes, la coloration fractionnaire est une généralisation de la coloration des graphes ordinaire. Dans une coloration de graphe traditionnelle, une couleur est affectée à chaque sommet d'un graphe, et deux sommets adjacents ne doivent pas avoir la même couleur. Dans une coloration fractionnaire, un ensemble de couleurs est affecté à chaque sommet du graphe.
Force-based layoutLes algorithmes de dessin basé sur les forces (Force-based ou Force-directed algorithms) permettent de positionner les nœuds d'un graphe pour faciliter sa visualisation en utilisant un système de force appliqués entre les nœuds et les arcs. L'algorithme peut être décrit comme une analogie physique des composants du graphe : Les nœuds sont représentés par des particules de même charge Les arcs sont assimilables à des ressorts À chaque passe, l'algorithme fait la somme des forces appliquées sur chacun des nœuds puis les déplace suivant des règles de physique classique jusqu'à trouver un état stable.
Family of setsIn set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. A family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of .
Monstrous moonshineEn mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton en 1979, utilisé pour décrire la connexion, alors totalement inattendue, entre le groupe Monstre M et les formes modulaires (en particulier la fonction j). Précisément, Conway et Norton, suivant une observation initiale de John McKay, trouvèrent que le développement de Fourier de (, où désigne le ) pouvait être exprimé en termes de combinaisons linéaires des dimensions des représentations irréductibles de M () où et Conway et Norton formulèrent des conjectures concernant les fonctions obtenues en remplaçant les traces sur l'élément neutre par les traces sur d'autres éléments g de M.