Explore les espaces de distribution et d'interpolation, les opérateurs différentiels, la transformée de Fourier, l'espace de Schwartz, les solutions fondamentales, la transformée de Farrier et la continuité uniforme.
Couvre la théorie du mouvement brownien, de la diffusion et des promenades aléatoires, en mettant l'accent sur la théorie d'Einstein pour le mouvement unidimensionnel.
Explore la résolution des équations différentielles à l'aide de données périodiques à l'aide de la série de Fourier et approfondit l'équation de la chaleur dans R.
Explore la diffusion d'un point de vue macroscopique, en mettant l'accent sur la dérivation de l'équation de diffusion par la conservation de masse et la loi de flux fixe.