Pressure-gradient forceIn fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of motion, if there is no additional force to balance it. The resulting force is always directed from the region of higher-pressure to the region of lower-pressure.
Control volumeIn continuum mechanics and thermodynamics, a control volume (CV) is a mathematical abstraction employed in the process of creating mathematical models of physical processes. In an inertial frame of reference, it is a fictitious region of a given volume fixed in space or moving with constant flow velocity through which the continuum (gas, liquid or solid) flows. The closed surface enclosing the region is referred to as the control surface. At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant.
Densité de forceEn mécanique des fluides, la densité volumique de force est l'opposé du gradient de la pression. Sa dimension est celle d'une force par unité de volume. La densité de force est un champ vectoriel représentant la distribution volumique de la force hydrostatique au sein du fluide. La densité de force est habituellement notée .
Centre de pousséeEn aéronautique, le centre de poussée d'un aérodyne est le point d'application des forces aérodynamiques et sa variation spatiale correspond à la trajectoire. En yachting, le centre de poussée d'un voilier est appelé centre vélique. Par analogie, on peut dire que le centre de poussée est aux forces aérodynamiques ce que le centre de gravité est aux forces de pesanteur. En effet, lorsqu'un solide est placé dans un fluide en mouvement, en tout point de sa surface est exercée une force (pression ou dépression).
Secondary flowIn fluid dynamics, flow can be decomposed into primary flow plus secondary flow, a relatively weaker flow pattern superimposed on the stronger primary flow pattern. The primary flow is often chosen to be an exact solution to simplified or approximated governing equations, such as potential flow around a wing or geostrophic current or wind on the rotating Earth. In that case, the secondary flow usefully spotlights the effects of complicated real-world terms neglected in those approximated equations.
BarotropeEn mécanique des fluides, un fluide barotrope est celui dont les lignes d'égale pression sont parallèles à celles d'égale densité (isopycne). Ce qualificatif est utilisé dans plusieurs domaines dont la météorologie, l'océanographie physique et l'astrophysique pour décrire des gaz ou liquides dont les propriétés ne varient pas avec l'épaisseur. Dans un fluide barotrope idéal, la variation de la pression se fait seulement avec la variation de la densité: .
Écoulement en chargeLes écoulements en charge sont un des trois types d’s étudiés couramment en hydrodynamique avec les écoulements en surface libre et les écoulements de percolation. Les écoulements en charge sont l'objet d'étude de l’hydraulique en charge. Cette branche de l'hydraulique s’intéresse aux écoulements dans les conduites sans surface libre c’est-à-dire lorsqu’elles sont entièrement remplies de fluide. La section d’écoulement du fluide est égale à la section du canal.
Instabilité de Rayleigh-TaylorL’instabilité de Rayleigh–Taylor, nommée en hommage aux physiciens britanniques Lord Rayleigh et G. I. Taylor, est une instabilité de l’interface séparant deux fluides de densités différentes, qui résulte de la poussée du fluide le plus lourd sur le fluide le plus léger (l'accélération dans le cas d'un système dynamique ou la gravité pour un système initialement statique est dirigée vers la phase légère). Ce phénomène est produit par exemple par l'onde de choc à l'origine des nuages interstellaires.
Apparent viscosityIn fluid mechanics, apparent viscosity (sometimes denoted η) is the shear stress applied to a fluid divided by the shear rate: For a Newtonian fluid, the apparent viscosity is constant, and equal to the Newtonian viscosity of the fluid, but for non-Newtonian fluids, the apparent viscosity depends on the shear rate. Apparent viscosity has the SI derived unit Pa·s (Pascal-second), but the centipoise is frequently used in practice: (1 mPa·s = 1 cP).
Reynolds stressIn fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum. The velocity field of a flow can be split into a mean part and a fluctuating part using Reynolds decomposition. We write with being the flow velocity vector having components in the coordinate direction (with denoting the components of the coordinate vector ).