Catégorie

Théorie des jeux

Concepts associés (41)
Équilibre de Nash
vignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Théorie des jeux
La théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Extensive-form game
In game theory, an extensive-form game is a specification of a game allowing (as the name suggests) for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the (possibly imperfect) information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature".
Raisonnement rétrograde
vignette|Un jeu séquentiel en quatre étapes avec une limite de prévoyance Le raisonnement rétrograde ou l'induction à rebours (Backward induction) est une méthode de raisonnement qui consiste à partir d'un résultat final connu pour retracer les étapes ou les événements qui ont conduit à ce résultat. Principalement utilisée en théorie des jeux, il est utilisé pour résoudre les jeux de manière séquentielle en partant de la fin du jeu et en remontant jusqu'au début.
Stratégie (théorie des jeux)
En théorie des jeux, la stratégie d'un joueur est l’une des options qu’il choisit dans un contexte où le résultat dépend non seulement de ses propres actions, mais également de celles des autres . La stratégie d'un joueur déterminera l'action qu'il entreprendra à n'importe quel stade de la partie. Une stratégie est un algorithme complet pour jouer à un jeu permettant au joueur de déterminer ce qu’il doit faire dans toutes les situations possibles du jeu.
Jeu séquentiel
vignette| Les échecs sont un exemple de jeu séquentiel. En théorie des jeux, un jeu séquentiel est un jeu où les joueurs choisissent leur actions à tour de rôle. Pour qu'un jeu soit séquentiel il faut que certaines informations sur les choix d'un joueur à son tour soient connues par les joueurs suivants avant qu'ils ne fassent eux-mêmes leur choix; sans cela, le tour du premier joueur n'aurait pas d'effet sur la stratégie des suivants. Les jeux séquentiels sont donc régis par l'axe du temps, et peuvent être représentés sous forme d'arbres de décision.
Jeu bayésien
En théorie des jeux, un jeu bayésien est un jeu dans lequel l'information dont dispose chaque joueur sur les caractéristiques des autres joueurs est incomplète. En particulier, on représente ainsi un jeu dans lequel un ou plusieurs joueurs font face à une incertitude quant au gain des autres joueurs. Cette situation impose de spécifier pour chaque joueur des croyances concernant les caractéristiques des autres joueurs. Du fait de l'hypothèse de rationalité, ces croyances prennent la forme d'une distribution de probabilités sur toutes les caractéristiques possibles.
Perfect information
In economics, perfect information (sometimes referred to as "no hidden information") is a feature of perfect competition. With perfect information in a market, all consumers and producers have complete and instantaneous knowledge of all market prices, their own utility, and own cost functions. In game theory, a sequential game has perfect information if each player, when making any decision, is perfectly informed of all the events that have previously occurred, including the "initialization event" of the game (e.
Dilemme du prisonnier
Le dilemme du prisonnier, énoncé en 1950 par Albert W. Tucker à Princeton, caractérise en théorie des jeux une situation où deux joueurs auraient intérêt à coopérer, mais où, en l'absence de communication entre les deux joueurs, chacun choisira de trahir l'autre si le jeu n'est joué qu'une fois. La raison est que si l'un coopère et que l'autre trahit, le coopérateur est fortement pénalisé. Pourtant, si les deux joueurs trahissent, le résultat leur est moins favorable que si les deux avaient choisi de coopérer.
Signaling game
In game theory, a signaling game is a simple type of a dynamic Bayesian game. The essence of a signalling game is that one player takes an action, the signal, to convey information to another player, where sending the signal is more costly if they are conveying false information. A manufacturer, for example, might provide a warranty for its product in order to signal to consumers that its product is unlikely to break down. The classic example is of a worker who acquires a college degree not because it increases their skill, but because it conveys their ability to employers.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.