Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
Modèle d'équations structurellesLa modélisation d'équations structurelles ou la modélisation par équations structurelles ou encore la modélisation par équations structurales (en anglais structural equation modeling ou SEM) désignent un ensemble diversifié de modèles mathématiques, algorithmes informatiques et méthodes statistiques qui font correspondre un réseau de concepts à des données. On parle alors de modèles par équations structurales, ou de modèles en équations structurales ou encore de modèles d’équations structurelles.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Analyse factorielleL'analyse factorielle est un terme qui désigne aujourd'hui plusieurs méthodes d'analyses de grands tableaux rectangulaires de données, visant à déterminer et à hiérarchiser des facteurs corrélés aux données placées en colonnes. Au sens anglo-saxon du terme, l'analyse factorielle (factor analysis) désigne une méthode de la famille de la statistique multivariée, utilisée pour décrire un ensemble de variables observées, au moyen de variables latentes (non observées).
Propagation des convictionsLa propagation des convictions (Belief Propagation ou BP en anglais), aussi connu comme la transmission de message somme-produit, est un algorithme à passage de message pour effectuer des inférences sur des modèles graphiques, tels que les réseaux Bayésiens et les champs de Markov. Il calcule la distribution marginale de chaque nœud « non-observé » conditionnée sur les nœuds observés.
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Champ aléatoire conditionnelLes champs aléatoires conditionnels (conditional random fields ou CRFs) sont une classe de modèles statistiques utilisés en reconnaissance des formes et plus généralement en apprentissage statistique. Les CRFs permettent de prendre en compte l'interaction de variables « voisines ». Ils sont souvent utilisés pour des données séquentielles (langage naturel, séquences biologiques, vision par ordinateur). Les CRFs sont un exemple de réseau probabiliste non orienté.
Champ aléatoire de MarkovUn champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Confirmatory factor analysisIn statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to test whether the data fit a hypothesized measurement model. This hypothesized model is based on theory and/or previous analytic research.
Algorithme espérance-maximisationL'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes.