Complexité de RademacherLa complexité de Rademacher est un concept d'informatique théorique ; il se situe plus précisément à l'intersection de théorie de apprentissage automatique et de la théorie de la complexité. La complexité de Rademacher mesure la richesse d'une classe de fonctions à valeur réelle, selon une distribution de probabilité. Elle porte le nom de Hans Rademacher. Étant donné des observations , et une classe de fonctions à valeurs réelles définies sur un espace , la complexité empirique de Rademacher de est définie comme : où sont des variables aléatoires indépendantes, tirées selon la loi de Rademacher i.
Inégalité de KraftEn théorie des codes, l'inégalité de Kraft donne, étant donné un ensemble de longueurs de mots de code, une condition nécessaire et suffisante pour l'existence d'un code préfixe et d'un code uniquement décodable. L'inégalité de Kraft est nommée d'après Leon Kraft. Elle est publiée par Kraft en 1949. Toutefois, l'article de Kraft traite uniquement des codes de préfixe, et attribue l'analyse menant à l'inégalité à Raymond Redheffer.
F-divergenceIn probability theory, an -divergence is a function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence. These divergences were introduced by Alfréd Rényi in the same paper where he introduced the well-known Rényi entropy. He proved that these divergences decrease in Markov processes.
Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Viterbi decoderA Viterbi decoder uses the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code. There are other algorithms for decoding a convolutionally encoded stream (for example, the Fano algorithm). The Viterbi algorithm is the most resource-consuming, but it does the maximum likelihood decoding. It is most often used for decoding convolutional codes with constraint lengths k≤3, but values up to k=15 are used in practice. Viterbi decoding was developed by Andrew J.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Entropie croiséeEn théorie de l'information, l'entropie croisée entre deux lois de probabilité mesure le nombre de bits moyen nécessaires pour identifier un événement issu de l'« ensemble des événements » - encore appelé tribu en mathématiques - sur l'univers , si la distribution des événements est basée sur une loi de probabilité , relativement à une distribution de référence . L'entropie croisée pour deux distributions et sur le même espace probabilisé est définie de la façon suivante : où est l'entropie de , et est la divergence de Kullback-Leibler entre et .
Code linéaireEn mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.
Conditional mutual informationIn probability theory, particularly information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third. For random variables , , and with support sets , and , we define the conditional mutual information as This may be written in terms of the expectation operator: . Thus is the expected (with respect to ) Kullback–Leibler divergence from the conditional joint distribution to the product of the conditional marginals and .
Informationvignette|redresse=0.6|Pictogramme représentant une information. L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« information » est ce qui donne une forme à l'esprit. Elle vient du verbe latin « informare », qui signifie « donner forme à » ou « se former une idée de ». L'information désigne à la fois le message à communiquer et les symboles utilisés pour l'écrire. Elle utilise un code de signes porteurs de sens tels qu'un alphabet de lettres, une base de chiffres, des idéogrammes ou pictogrammes.