Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre un examen des concepts d'apprentissage automatique, y compris l'apprentissage supervisé, la classification vs régression, les modèles linéaires, les fonctions du noyau, les machines vectorielles de soutien, la réduction de la dimensionnalité, les modèles génératifs profonds et la validation croisée.
Explore l'évolution des CNN dans le traitement de l'image, couvrant les réseaux neuronaux classiques et profonds, les algorithmes d'entraînement, la rétropropagation, les étapes non linéaires, les fonctions de perte et les frameworks logiciels.
Couvre les techniques de réduction de dimensionnalité telles que PCA et LDA, les méthodes de clustering, l'estimation de la densité et la représentation des données.
Discute des défis liés à la construction de réseaux neuraux physiques, en mettant l'accent sur la profondeur, les connexions et la capacité de formation.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.