T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning. T-norm fuzzy logics belong in broader classes of fuzzy logics and many-valued logics.
In mathematics, a t-norm (also T-norm or, unabbreviated, triangular norm) is a kind of binary operation used in the framework of probabilistic metric spaces and in multi-valued logic, specifically in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in logic. The name triangular norm refers to the fact that in the framework of probabilistic metric spaces t-norms are used to generalize the triangle inequality of ordinary metric spaces.
La théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
La logique floue (fuzzy logic, en anglais) est une logique polyvalente où les valeurs de vérité des variables — au lieu d'être vrai ou faux — sont des réels entre 0 et 1. En ce sens, elle étend la logique booléenne classique avec des . Elle consiste à tenir compte de divers facteurs numériques pour qu'on souhaite acceptable.
En mathématique, la logique de Łukasiewicz est une logique polyvalente, non-classique. Elle a été définie à l'origine au début du par Jan Łukasiewicz comme une logique ternaire; elle a ensuite été généralisé à n-valeur (pour tous n fini) ainsi qu'à une infinité de variante à valeurs multiples, les deux sont propositionnelle et du premier ordre. La version א0-valeur a été publié en 1930 par Łukasiewicz et Alfred Tarski; par conséquent, elle est parfois appelé la logique de Łukasiewicz-Tarski.
In mathematical logic, monoidal t-norm based logic (or shortly MTL), the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices (known as Höhle's monoidal logic, Ono's FLew, or intuitionistic logic without contraction) by the axiom of prelinearity. In fuzzy logic, rather than regarding statements as being either true or false, we associate each statement with a numerical confidence in that statement.
Fuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.
In linguistics and philosophy, a vague predicate is one which gives rise to borderline cases. For example, the English adjective "tall" is vague since it is not clearly true or false for someone of middling height. By contrast, the word "prime" is not vague since every number is definitively either prime or not. Vagueness is commonly diagnosed by a predicate's ability to give rise to the Sorites paradox. Vagueness is separate from ambiguity, in which an expression has multiple denotations.