Evolutionary computationIn computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated.
Paysage adaptatifLe paysage adaptatif (ou paysage de fitness, fitness landscape en anglais) est un outil utilisé en biologie évolutive pour visualiser les relations entre des génotypes et le succès reproductif. Le paysage adaptatif est une représentation de la fitness d’organismes, d’espèces ou de populations sous forme d’une carte topographique. Cette fitness, ou valeur sélective, est une mesure relative de la survie et de la reproduction. vignette|Croquis d'un paysage de fitness.
Algorithme à évolution différentielleEn recherche opérationnelle (informatique théorique), un algorithme à évolution différentielle est un type d'algorithme évolutionnaire. Le domaine des algorithmes évolutionnaires a connu un grand développement ces dernières années. L'évolution différentielle est un de ces algorithmes. À l'origine, l'évolution différentielle était conçue pour les problèmes d'optimisation continus et sans contraintes. Ses extensions actuelles peuvent traiter les problèmes à variables mixtes et gèrent les contraintes non linéaires.
Recherche locale (optimisation)En algorithmique, la recherche locale est une méthode générale utilisée pour résoudre des problèmes d'optimisation, c'est-à-dire des problèmes où l'on cherche la meilleure solution dans un ensemble de solutions candidates. La recherche locale consiste à passer d'une solution à une autre solution proche dans l'espace des solutions candidates (l'espace de recherche) jusqu'à ce qu'une solution considérée comme optimale soit trouvée, ou que le temps imparti soit dépassé.
Tierra (simulation informatique)Tierra est une simulation informatique créée et développée par Thomas S. Ray pour l'étude de la vie artificielle. Ray, T. S. 1991, "Evolution and optimization of digital organisms", in Billingsley K.R. et al (eds), Scientific Excellence in Supercomputing: The IBM 1990 Contest Prize Papers, Athens, GA, 30602: The Baldwin Press, The University of Georgia. Publication date: December 1991, pp. 489–531. Bedau M.A., McCaskill J.S. et al., "Open problems in artificial life", Artificial Life, 2000 Fall 6(4):363-76.
Optimisation par essaims particulairesL'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Méthode hill-climbingvignette|graphe de la méthode de hill-climbing La méthode hill-climbing ou méthode d' est une méthode d'optimisation permettant de trouver un optimum local parmi un ensemble de configurations. Le hill-climbing une méthode générale qui prend en entrée trois objets : une configuration, une fonction qui pour chaque configuration donne un ensemble de configurations voisines, et une fonction-objectif qui permet d'évaluer chaque configuration.
Recherche tabouLa recherche tabou est une métaheuristique d'optimisation présentée par Fred W. Glover en 1986. On trouve souvent l'appellation recherche avec tabous en français. Cette méthode est une métaheuristique itérative qualifiée de recherche locale au sens large. L'idée de la recherche tabou consiste, à partir d'une position donnée, à en explorer le voisinage et à choisir la position dans ce voisinage qui minimise la fonction objectif.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.