Fitness functionA fitness function is a particular type of objective function that is used to summarise, as a single figure of merit, how close a given design solution is to achieving the set aims. Fitness functions are used in evolutionary algorithms (EA), such as genetic programming and genetic algorithms to guide simulations towards optimal design solutions. In the field of EAs, each design solution is commonly represented as a string of numbers (referred to as a chromosome).
Nurse scheduling problemThe nurse scheduling problem (NSP), also called the nurse rostering problem (NRP), is the operations research problem of finding an optimal way to assign nurses to shifts, typically with a set of hard constraints which all valid solutions must follow, and a set of soft constraints which define the relative quality of valid solutions. Solutions to the nurse scheduling problem can be applied to constrained scheduling problems in other fields. The nurse scheduling problem has been studied since before 1969, and is known to have NP-hard complexity.
Symbolic regressionSymbolic regression (SR) is a type of regression analysis that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity. No particular model is provided as a starting point for symbolic regression. Instead, initial expressions are formed by randomly combining mathematical building blocks such as mathematical operators, analytic functions, constants, and state variables.
NeuroevolutionNeuroevolution, or neuro-evolution, is a form of artificial intelligence that uses evolutionary algorithms to generate artificial neural networks (ANN), parameters, and rules. It is most commonly applied in artificial life, general game playing and evolutionary robotics. The main benefit is that neuroevolution can be applied more widely than supervised learning algorithms, which require a syllabus of correct input-output pairs. In contrast, neuroevolution requires only a measure of a network's performance at a task.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Méthode de l'entropie croiséeLa méthode de l'entropie-croisée (CE) attribuée à Reuven Rubinstein est une méthode générale d'optimisation de type Monte-Carlo, combinatoire ou continue, et d'échantillonnage préférentiel. La méthode a été conçue à l'origine pour la simulation d'événements rares, où des densités de probabilité très faibles doivent être estimées correctement, par exemple dans l'analyse de la sécurité des réseaux, les modèles de , ou l'analyse des performances des systèmes de télécommunication.