EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
MATH-519: Topics in high-dimensional probabilityThis is a theoretical course about probability in high dimensions. We will look at some mathematical phenomena appearing as the number of random variables grows large - e.g. concentration of measure o
EE-511: Sensors in medical instrumentationFundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
MATH-486: Statistical mechanics and Gibbs measuresThis course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
ME-372: Finite element methodL'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
CS-526: Learning theoryMachine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.
PHYS-211: Physics lab IIbCe cours pratique permet d'acquérir la connaissance des phénomènes physiques de base ainsi que de leurs applications, d'acquérir des connaissances concernant les méthodes d'observation et de mesure ai