Statistique mathématiquevignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Mathématiquesthumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Génie informatiqueLe génie informatique, ou l'ingénierie informatique, est une discipline qui traite de la conception, du développement et de la fabrication de systèmes informatiques, aussi bien d'un point de vue matériels que logiciels. Le terme anglais computer engineering est parfois utilisé dans un sens plus restreint, considérant le génie informatique comme une discipline reliée au génie électrique, et fait alors référence à la conception, au développement et à la fabrication du matériel uniquement.
Science formelleLes sciences formelles (ou sciences logico-formelles) explorent déductivement, selon des règles de formation et de démonstration, des systèmes axiomatiques. Les sciences formelles regroupent les mathématiques, la logique et l'informatique théorique. L'algèbre est la branche des mathématiques qui étudie les structures algébriques, indépendamment de la notion de limite (rattachée à l'analyse) et de la notion de représentation graphique (rattachée à la géométrie).
Applied sciencesThe following outline is provided as an overview of and topical guide to applied science: Applied science – the branch of science that applies existing scientific knowledge to develop more practical applications, including inventions and other technological advancements. Science itself is the systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Applied cryptography – applications of cryptography.
Discipline (spécialité)Une discipline désigne une branche du savoir développée par une communauté de spécialistes adhérant aux mêmes pratiques de recherche. On parle ainsi de discipline scientifique ou de discipline littéraire. Un certain nombre de disciplines sont entre les deux genres. En sciences, les membres d'une discipline forment une communauté scientifique et adhèrent aux mêmes critères de démarcation assujettis à la réfutabilité.