Réduction du paquet d'ondeLa réduction du paquet d'onde est un concept de la mécanique quantique selon lequel, après une mesure, un système physique voit son état entièrement réduit à celui qui a été mesuré. Pendant longtemps, le processus par lequel cette réduction a lieu a été inconnu des physiciens, ce qui les a contraint à en faire un postulat afin de rester conforme aux résultats expérimentaux. Le concept de réduction du paquet d'onde implique de nombreuses difficultés sur le plan logique et épistémologique.
Phase qubitIn quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit. The phase qubit is closely related, yet distinct from, the flux qubit and the charge qubit, which are also quantum bits implemented by superconducting devices.
Suprématie quantiqueLa suprématie quantique, aussi appelée avantage quantique, désigne le nombre de qubits au-delà duquel plus aucun superordinateur classique n'est capable de gérer la croissance exponentielle de la mémoire et la bande passante de communication nécessaire pour simuler son équivalent quantique. Les superordinateurs de 2017 peuvent reproduire les résultats d'un ordinateur quantique de , mais à partir de cela devient physiquement impossible. Le seuil d'environ 50 qubits correspond à la limite théorique de la suprématie quantique.
Théorème no-goEn physique théorique, un théorème no-go ou théorème d'impossibilité est un théorème qui énonce que certaines conditions ne sont pas physiquement possibles. Plus spécifiquement, ce terme décrit des résultats de mécanique quantique comme le théorème de Bell ou le théorème de Kochen–Specker qui contraignent les types de variables cachées admissibles qui tentent d'expliquer le caractère apparemment aléatoire de la mécanique quantique comme étant un déterminisme impliquant des états cachés.
Categorical quantum mechanicsCategorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably . The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020. Mathematically, the basic setup is captured by a : composition of morphisms models sequential composition of processes, and the tensor product describes parallel composition of processes.
No-broadcasting theoremIn physics, the no-broadcasting theorem is a result of quantum information theory. In the case of pure quantum states, it is a corollary of the no-cloning theorem. The no-cloning theorem for pure states says that it is impossible to create two copies of an unknown state given a single copy of the state. Since quantum states cannot be copied in general, they cannot be broadcast. Here, the word "broadcast" is used in the sense of conveying the state to two or more recipients.
Two-state quantum systemIn quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit. Two-state systems are the simplest quantum systems that are of interest, since the dynamics of a one-state system is trivial (as there are no other states the system can exist in).
Hidden subgroup problemThe hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's quantum algorithm for factoring is an instance of the hidden subgroup problem for finite Abelian groups, while the other problems correspond to finite groups that are not Abelian.
Inégalités de BellEn mécanique quantique, les inégalités de Bell, énoncées en 1964 par John Stewart Bell, sont des relations que doivent respecter les mesures sur des états intriqués dans l'hypothèse d'une théorie déterministe locale à variables cachées.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.