Les dérivés réactifs de l'oxygène (DRO) ou espèces réactives de l'oxygène (ERO), ou ROS, sont des espèces chimiques oxygénées telles que des radicaux libres, des ions oxygénés et des peroxydes, rendus chimiquement très réactifs par la présence d'électrons de valence non appariés. Il peut s'agir par exemple de l'anion superoxyde , de l'oxygène singulet , du peroxyde d'hydrogène , ou encore de l'ozone . Les DRO peuvent être d'origine exogène ou bien endogène, apparaissant comme sous-produits du métabolisme normal de l'oxygène et jouant alors un rôle important dans la communication entre les cellules.
Le stress oxydant, appelé aussi stress oxydatif (anglicisme) ou pression oxydative, est un type d'agression des constituants de la cellule. Il apparait quand des espèces réactives oxygénées (ou radicaux libres) et/ou des espèces réactives oxygénées et azotées oxydant pénètrent la cellule ou s'y forment ; ces molécules sont instables et très cytotoxiques car elles « oxydent » d'autres molécules en leur soustrayant un électron ce qui les rend à leur tour instables. Ces espèces peuvent être ou non des radicaux.
vignette|300px|Modèle spatial de la molécule du glutathion. La sphère jaune représente l'atome réducteur de soufre qui apporte la fonction antioxydante. Les sphères rouges, bleues, blanches et grises représentent respectivement les atomes d'oxygène, d'azote, d'hydrogène et de carbone. Un antioxydant (AOX) est une molécule qui ralentit ou empêche l'oxydation d'autres substances chimiques à leur contact. L'oxydation fait partie d'une réaction d'oxydoréduction qui transfère des électrons d'une substance vers un agent oxydant.
Un radical (souvent appelé radical libre) est une espèce chimique possédant un ou plusieurs électrons non appariés sur sa couche externe. L'électron se note par un point. La présence d'un électron célibataire confère à ces molécules, la plupart du temps, une grande instabilité (elles ne respectent pas la règle de l'octet), ce qui signifie qu'elles ont la possibilité de réagir avec de nombreux composés dans des processus le plus souvent non spécifiques, et que leur durée de vie est très courte.
Les réactions d'oxydoréduction sont d'une importance capitale en chimie organique. Néanmoins, la structure des composés rend l'approche assez différente de ce que l'on observe en chimie inorganique ou en électrochimie notamment parce que les principes d'oxydoréduction traitent plutôt, dans ces deux derniers cas, de composés ioniques ; les liaisons chimiques dans une structure organique sont essentiellement covalentes, les réactions d'oxydoréduction organiques ne présentent donc pas de transfert d’électron dans le sens électrochimique du terme.
Une catalase (du grec kataluein, « dissoudre ») est une oxydoréductase héminique qui catalyse la dismutation du peroxyde d'hydrogène en eau et dioxygène : 2 → + 2 . Ces enzymes sont formées de quatre chaînes polypeptidiques d’environ d'acides aminés, comportant chacune une molécule d'hème. Ces hèmes et leur environnement protéique sont les sites actifs de l'enzyme.
vignette|Structure dimérique de la Cu-SOD cytoplasmique humaine Les superoxydes dismutases (SOD) sont des métalloprotéines qui sont également des oxydoréductases catalysant la dismutation des anions superoxyde en oxygène et peroxyde d'hydrogène : 2 + 2 H ⟶ + . Cette enzyme intervient dans l'explosion oxydative et est également une composante essentielle du mécanisme d'élimination des radicaux libres. Elle est présente dans presque tous les organismes aérobies.
La dismutation est une réaction chimique dans laquelle une espèce joue à la fois le rôle d'oxydant et de réducteur : un atome ou un groupe fonctionnel, initialement présent avec un seul degré d'oxydation, se trouve après la réaction sous la forme de deux espèces, l'une oxydée et l'autre réduite. La réaction d'oxydoréduction inverse s'appelle réaction de médiamutation, antidismutation, rétrodismutation, dédismutation voire amphotérisation redox (réaction entre deux espèces dans lesquelles un atome ou groupe fonctionnel était initialement présent à des degrés d'oxydation différents pour donner une espèce avec un seul degré d'oxydation pour cet élément).
Le glutathion est un pseudo-tripeptide formé par la condensation d'acide glutamique, de cystéine et de glycine : . Le glutathion, qui existe sous forme oxydée et réduite, intervient dans le maintien du potentiel redox du cytoplasme de la cellule. Il intervient aussi dans un certain nombre de réactions de détoxication et d'élimination d'espèces réactives de l'oxygène. À noter que le groupement amine de la cystéine se condense avec la fonction acide carboxylique en γ de l'acide glutamique.
L'ion superoxyde, noté •− ou − (la deuxième écriture ne fait pas apparaître explicitement le caractère radicalaire) est issu de la réduction monoélectronique du dioxygène (). L'ion superoxyde est paramagnétique. Des sels de l'ion superoxyde tels que le superoxyde de potassium (K) se forment naturellement par réaction directe du dioxygène avec certains métaux. Le superoxyde est thermodynamiquement instable, quel que soit le pH, par rapport à sa dismutation en peroxyde d'hydrogène et en dioxygène .