Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Relativité restreinteLa relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).
Espace-tempsEn physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale.
Facteur de LorentzLe facteur de Lorentz est un paramètre-clé intervenant dans de nombreuses formules de la relativité restreinte. Il s’agit du facteur par lequel le temps, les longueurs et la masse relativistes changent pour un objet tandis que cet objet est en mouvement. Le facteur de Lorentz () est ainsi nommé en l'honneur du mathématicien et physicien néerlandais Hendrik Antoon Lorentz, lauréat du prix Nobel de physique en 1902, qui l'a introduit en 1904 comme rapport de proportionnalité entre deux temps, le temps vrai et le temps local, mais qui apparaissait dans ses travaux antérieurs de 1895 comme rapport de deux longueurs.
QuadrivecteurEn physique, un quadrivecteur est un vecteur à quatre dimensions utilisé pour représenter un événement dans l'espace-temps. Dans la théorie de la relativité restreinte, un quadrivecteur est un vecteur de l'espace de Minkowski, où un changement de référentiel se fait par des transformations de Lorentz (par covariance des coordonnées). En relativité restreinte, un quadrivecteur (ou 4-vecteur) est un vecteur appartenant à l'espace vectoriel associé à l'espace affine qu'est l'espace-temps.
Diagramme de Minkowskivignette|droite|Diagramme de Minkowski représentant un événement E avec ses coordonnées d'espace-temps (x,ct) dans un référentiel R, et celles (x', ct') dans un référentiel R' en déplacement par rapport au premier à la vitesse v ; ainsi qu'un des axes du cône de lumière, en rouge. L'unité des graduations sur les axes de R' sont notées 1' sur chacun. Le diagramme de Minkowski est une représentation de l'espace-temps développée en 1908 par Hermann Minkowski, permettant une visualisation des propriétés dans la théorie de la relativité restreinte.
Temps propreEn théorie relativiste, on appelle temps propre τ d'un objet le temps mesuré dans « le » référentiel de cet objet, c'est-à-dire dans un référentiel où il est immobile. En relativité restreinte, l'intervalle de temps propre séparant deux événements est l'intervalle de temps les séparant dans un référentiel inertiel où ils ont lieu au même endroit de l'espace. En mécanique newtonienne, on décrit le mouvement d'un corps, dans un espace absolu, par rapport à un temps absolu.
Contraction des longueursEn relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.
Dilatation du tempsLe terme dilatation du temps désigne un effet de la relativité restreinte selon lequel l'intervalle de temps entre deux événements mesurés dans un référentiel inertiel quelconque est toujours supérieur à l'intervalle de temps mesuré dans le référentiel inertiel (en mouvement relatif au premier) où ces deux événements ont la même position spatiale mais n'ont pas lieu au même moment. Étant donné que le temps est défini, dans la théorie de la relativité, par la donnée initiale d'une horloge pour chaque référentiel, on peut en déduire que pour un observateur une horloge en mouvement semble ralentie par rapport à une horloge immobile.
Théorie de la relativitévignette|Formule de la théorie de la relativité d'Albert Einstein. L'expression théorie de la relativité renvoie le plus souvent à deux théories complémentaires élaborées par Albert Einstein et Mileva Marić : la relativité restreinte (1905) et la relativité générale (1915). Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne, qui s'applique à la mécanique newtonienne. En 1905, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité.