Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur l'application de l'apprentissage automatique à l'amélioration de la documentation relative aux droits de l'homme et aux activités de plaidoyer à l'intention d'organisations telles que HURIDOCS.
Explore les sources d'injustice dans l'apprentissage automatique, l'importance des mesures d'équité et l'évaluation des prédictions des modèles à l'aide de diverses mesures d'équité.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore la collecte de données, la sélection des caractéristiques, la construction de modèles et l'évaluation des performances dans l'apprentissage automatique, en mettant l'accent sur l'ingénierie des caractéristiques et la sélection des modèles.