Bias (statistics)Statistical bias, in the mathematical field of statistics, is a systematic tendency in which the methods used to gather data and generate statistics present an inaccurate, skewed or biased depiction of reality. Statistical bias exists in numerous stages of the data collection and analysis process, including: the source of the data, the methods used to collect the data, the estimator chosen, and the methods used to analyze the data. Data analysts can take various measures at each stage of the process to reduce the impact of statistical bias in their work.
Second moment methodIn mathematics, the second moment method is a technique used in probability theory and analysis to show that a random variable has positive probability of being positive. More generally, the "moment method" consists of bounding the probability that a random variable fluctuates far from its mean, by using its moments. The method is often quantitative, in that one can often deduce a lower bound on the probability that the random variable is larger than some constant times its expectation.
Jeu des biens publicsLe jeu des biens publics fait partie des jeux courants en économie expérimentale. Dans sa forme de base, les sujets doivent choisir secrètement le montant de leur participation privée (en termes de jetons) dans une caisse commune. Les jetons dans cette caisse sont multipliés par un nombre compris entre 1 et , et le montant total est divisé de manière équitable entre tous les joueurs. De plus, chaque joueur garde les jetons qu'il ne dépense pas. Le nom de ce jeu vient de la définition économique d'un bien public.
Orthogonality principleIn statistics and signal processing, the orthogonality principle is a necessary and sufficient condition for the optimality of a Bayesian estimator. Loosely stated, the orthogonality principle says that the error vector of the optimal estimator (in a mean square error sense) is orthogonal to any possible estimator. The orthogonality principle is most commonly stated for linear estimators, but more general formulations are possible. Since the principle is a necessary and sufficient condition for optimality, it can be used to find the minimum mean square error estimator.
Médiane (statistiques)En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Paradoxe de SteinLe paradoxe de Stein est un résultat de statistique, dû au statisticien Charles Stein, exposé dans un article de 1956, puis étendu dans un article co-écrit avec Willard James en 1961. Ce résultat n'est pas paradoxal à proprement parler, mais surprenant et contre intuitif. Il constitue un pas important dans l'introduction des (shrinkage estimators en anglais) en montrant que l' domine strictement l'estimateur du maximum de vraisemblance. Son caractère paradoxal vient du fait qu'il justifie de combiner des observations sans rapport entre elles pour estimer leurs espérances.
Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
MoyenneEn mathématiques, la moyenne est un outil de calcul permettant de résumer une liste de valeurs numériques en un seul nombre réel, indépendamment de l’ordre dans lequel la liste est donnée. Par défaut, il s’agit de la moyenne arithmétique, qui se calcule comme la somme des termes de la liste, divisée par le nombre de termes. D’autres moyennes peuvent être plus adaptées selon les contextes. La moyenne est un des premiers indicateurs statistiques pour une série de nombres.
Théorème de Moivre-LaplaceEn théorie des probabilités, selon le théorème de Moivre-Laplace, si la variable suit une loi binomiale d'ordre et de paramètre , alors la variable converge en loi vers une loi normale centrée et réduite . Abraham de Moivre fut le premier à établir ce théorème en 1733 dans le cas particulier : ; et Laplace a pu le généraliser en 1812 pour toute valeur de comprise entre 0 et 1. Il s'agit d'un cas particulier du théorème central limite. La démonstration repose sur l'identification de la loi limite par l'étude des fonctions caractéristiques des variables binomiales.
Completeness (statistics)In statistics, completeness is a property of a statistic in relation to a parameterised model for a set of observed data. A complete statistic T is one for which any proposed distribution on the domain of T is predicted by one or more prior distributions on the model parameter space. In other words, the model space is 'rich enough' that every possible distribution of T can be explained by some prior distribution on the model parameter space. In contrast, a sufficient statistic T is one for which any two prior distributions will yield different distributions on T.