Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les bases de l'échantillonnage et de la reconstruction du signal, y compris le théorème d'échantillonnage et les systèmes de reconstruction pratiques.
Présente des statistiques de comparaison, des taux d'erreur, des tests d'hypothèses et des exemples réels d'efficacité du traitement et d'analyse d'haltérophilie.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.
Explore les avantages prouvables d'une surparamétrie dans la compression des modèles, en mettant l'accent sur l'efficacité des réseaux neuronaux profonds et sur l'importance du recyclage pour améliorer les performances.
Explore l'application du modèle Weibull aux données aléatoires et son importance dans l'analyse de la force matérielle et de la probabilité de défaillance.