Point périodiquevignette|Diagramme explicatif du point périodique de période 4 du système dynamique discret f En mathématiques, un point périodique pour une fonction est un point fixe pour l’une des fonctions itérées. La période de ce point est alors la période de la suite récurrente associée. De tels points périodiques apparaissent facilement avec une suite logistique lorsque le paramètre μ dépasse la valeur 3. Le théorème de Charkovski donne un ordre sur les périodes pouvant apparaitre dans les suites récurrentes réelles simples associée à une fonction donnée.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Viable system theoryViable system theory (VST) concerns cybernetic processes in relation to the development/evolution of dynamical systems. They are considered to be living systems in the sense that they are complex and adaptive, can learn, and are capable of maintaining an autonomous existence, at least within the confines of their constraints. These attributes involve the maintenance of internal stability through adaptation to changing environments. One can distinguish between two strands such theory: formal systems and principally non-formal system.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Entropie topologiqueEn mathématiques et plus précisément, dans la théorie des systèmes dynamiques, l'entropie topologique est un réel associé à tout homéomorphisme d'un espace topologique compact. Ce réel caractérise l'action induite de l'homéomorphisme sur les recouvrements ouverts finis de l'espace considéré, ou plutôt le comportement limite de son itération lorsque le nombre d'ouverts tend vers l'infini. Certains ouvrages ou articles définissent la notion par restriction aux espaces compacts métrisables.
Variété stableLes variétés stables jouent un rôle central dans les systèmes dynamiques différentiables en temps continu. Cette notion est aussi au centre de l'homologie de Floer. Soit une fonction différentiable sur une variété différentielle compacte de dimension . Considérons une métrique riemannienne sur . Le champ de gradient de est défini par Un point critique est dit non dégénéré lorsque la hessienne est une forme blinéaire non dégénérée sur .
Limit setIn mathematics, especially in the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be at equilibrium.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Attracteur de LorenzL’attracteur de Lorenz est une structure fractale correspondant au comportement à long terme de l'oscillateur de Lorenz. L'attracteur montre comment les différentes variables du système dynamique évoluent dans le temps en une trajectoire non périodique. En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie. Le modèle de Lorenz, appelé aussi système dynamique de Lorenz ou oscillateur de Lorenz, est une modélisation simplifiée de phénomènes météorologiques basée sur la mécanique des fluides.