Effet papillonvignette|Un graphique de l'attracteur étrange de Lorenz pour les valeurs ρ = 28, σ = 10, β = 8/3 « Effet papillon » est une expression qui résume une métaphore concernant le phénomène fondamental de sensibilité aux conditions initiales de la théorie du chaos. La formulation exacte qui en est à l'origine fut exprimée par Edward Lorenz lors d'une conférence scientifique en 1972, dont le titre était : vignette|Le battement d'ailes du papillon.
Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
Rare eventsRare or extreme events are events that occur with low frequency, and often refers to infrequent events that have a widespread effect and which might destabilize systems (for example, stock markets, ocean wave intensity or optical fibers or society). Rare events encompass natural phenomena (major earthquakes, tsunamis, hurricanes, floods, asteroid impacts, solar flares, etc.), anthropogenic hazards (warfare and related forms of violent conflict, acts of terrorism, industrial accidents, financial and commodity market crashes, etc.
Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Portrait de phaseUn portrait de phase est une représentation géométrique des trajectoires d'un système dynamique dans l'espace des phases : à chaque ensemble de conditions initiales correspond une courbe ou un point. Les portraits de phase constituent un outil précieux pour l'étude des systèmes dynamiques ; ils consistent en un ensemble de trajectoires-types dans l'espace des phases. Cela permet de caractériser la présence d'un attracteur, d'un répulseur ou d'un cycle limite pour les valeurs de paramètres choisies.
Cycle limiteDans le domaine des systèmes dynamiques, un cycle limite, ou cycle-limite sur un plan ou une variété bidimensionnelle est une trajectoire fermée dans l'espace des phases, telle qu'au moins une autre trajectoire spirale à l'intérieur lorsque le temps tend vers . Ces comportements s'observent dans certains systèmes non linéaires. Si toutes les trajectoires voisines approchent le cycle limite lorsque t , on parle de cycle limite stable ou attractif. Si en revanche cela se produit lorsque t , on parle de cycle limite instable ou non attractif.
L-SystèmeEn informatique théorique, un L-système ou système de Lindenmayer est un système de réécriture ou grammaire formelle, inventé en 1968 par le biologiste hongrois Aristid Lindenmayer. Un L-système modélise le processus de développement et de prolifération de plantes ou de bactéries. C'est une forme de grammaire générative. Ces grammaires ont été mises en œuvre graphiquement par de nombreux auteurs, menant à de spectaculaires images. Une étude systématique d'une certaine formulation a été entreprise par dans les années 1980.
IntermittencyIn dynamical systems, intermittency is the irregular alternation of phases of apparently periodic and chaotic dynamics (Pomeau–Manneville dynamics), or different forms of chaotic dynamics (crisis-induced intermittency). Experimentally, intermittency appears as long periods of almost periodic behavior interrupted by chaotic behavior. As control variables change, the chaotic behavior become more frequent until the system is fully chaotic. This progression is known as the intermittency route to chaos.
Flocon de KochLe flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Pitchfork bifurcationIn bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particular type of local bifurcation where the system transitions from one fixed point to three fixed points. Pitchfork bifurcations, like Hopf bifurcations, have two types – supercritical and subcritical. In continuous dynamical systems described by ODEs—i.e. flows—pitchfork bifurcations occur generically in systems with symmetry. The normal form of the supercritical pitchfork bifurcation is For , there is one stable equilibrium at .