Résumé
In mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time. Given a mapping f from a set X into itself, a point x in X is called periodic point if there exists an n so that where f_n is the nth iterate of f. The smallest positive integer n satisfying the above is called the prime period or least period of the point x. If every point in X is a periodic point with the same period n, then f is called periodic with period n (this is not to be confused with the notion of a periodic function). If there exist distinct n and m such that then x is called a preperiodic point. All periodic points are preperiodic. If f is a diffeomorphism of a differentiable manifold, so that the derivative is defined, then one says that a periodic point is hyperbolic if that it is attractive if and it is repelling if If the dimension of the stable manifold of a periodic point or fixed point is zero, the point is called a source; if the dimension of its unstable manifold is zero, it is called a sink; and if both the stable and unstable manifold have nonzero dimension, it is called a saddle or saddle point. A period-one point is called a fixed point. The logistic map exhibits periodicity for various values of the parameter r. For r between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, ..., which attracts all orbits). For r between 1 and 3, the value 0 is still periodic but is not attracting, while the value is an attracting periodic point of period 1. With r greater than 3 but less than 1 + \sqrt 6, there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and As the value of parameter r rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of r one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.