Error correction modelAn error correction model (ECM) belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run common stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics.
Negative relationshipIn statistics, there is a negative relationship or inverse relationship between two variables if higher values of one variable tend to be associated with lower values of the other. A negative relationship between two variables usually implies that the correlation between them is negative, or — what is in some contexts equivalent — that the slope in a corresponding graph is negative. A negative correlation between variables is also called anticorrelation or inverse correlation.
Hermitian functionIn mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: (where the indicates the complex conjugate) for all in the domain of . In physics, this property is referred to as PT symmetry. This definition extends also to functions of two or more variables, e.g., in the case that is a function of two variables it is Hermitian if for all pairs in the domain of .
Whittle likelihoodIn statistics, Whittle likelihood is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951. It is commonly used in time series analysis and signal processing for parameter estimation and signal detection. In a stationary Gaussian time series model, the likelihood function is (as usual in Gaussian models) a function of the associated mean and covariance parameters.
Secular variationThe secular variation of a time series is its long-term, non-periodic variation (see decomposition of time series). Whether a variation is perceived as secular or not depends on the available timescale: a variation that is secular over a timescale of centuries may be a segment of what is, over a timescale of millions of years, a periodic variation. Natural quantities often have both periodic and secular variations. Secular variation is sometimes called secular trend or secular drift when the emphasis is on a linear long-term trend.
Analyse des tendancesL'analyse des tendances est une pratique de collecte d'informations dans le but de repérer des tendances dans ces informations. Bien que l'analyse des tendances soit généralement utilisée pour prédire des événements futurs, elle pourrait être utilisée pour estimer des événements incertains du passé, comme le nombre de rois anciens à avoir dirigé entre deux dates, grâce à des données telles que la moyenne des années de règne des autres rois connus.
Seasonal adjustmentSeasonal adjustment or deseasonalization is a statistical method for removing the seasonal component of a time series. It is usually done when wanting to analyse the trend, and cyclical deviations from trend, of a time series independently of the seasonal components. Many economic phenomena have seasonal cycles, such as agricultural production, (crop yields fluctuate with the seasons) and consumer consumption (increased personal spending leading up to Christmas).
Coherence (signal processing)In signal processing, the coherence is a statistic that can be used to examine the relation between two signals or data sets. It is commonly used to estimate the power transfer between input and output of a linear system. If the signals are ergodic, and the system function is linear, it can be used to estimate the causality between the input and output. The coherence (sometimes called magnitude-squared coherence) between two signals x(t) and y(t) is a real-valued function that is defined as: where Gxy(f) is the Cross-spectral density between x and y, and Gxx(f) and Gyy(f) the auto spectral density of x and y respectively.
Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.