Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Explore les modèles linéaires pour la classification, y compris la classification binaire, la régression logistique, les limites de décision et les machines vectorielles de support.
Introduit des machines vectorielles de support, couvrant la perte de charnière, la séparation hyperplane et la classification non linéaire à l'aide de noyaux.
Explore la maximisation des marges pour une meilleure classification à l'aide de machines vectorielles de support et l'importance de choisir le bon paramètre.
Couvre l'inférence statistique, l'apprentissage automatique, les SVM pour la classification des pourriels, le prétraitement des courriels et l'extraction des fonctionnalités.