Extraction terminologiqueL'extraction terminologique est une application du traitement automatique du langage naturel qui consiste à extraire automatiquement une liste de termes à partir d'un corpus spécialisé. Les logiciels réalisant l'extraction terminologique sont appelés extracteurs de termes. Les termes extraits par l'extracteur de termes peuvent être utilisés de plusieurs façons : Terminologie assistée par ordinateur : Dans ce cas, l'extracteur de termes aide le terminologue dans sa tâche en lui "prémâchant" le travail.
Neural machine translationNeural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model. They require only a fraction of the memory needed by traditional statistical machine translation (SMT) models. Furthermore, unlike conventional translation systems, all parts of the neural translation model are trained jointly (end-to-end) to maximize the translation performance.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Systèmes de questions-réponsesUn système de questions-réponses (question answering system en anglais, ou QA system) est un système informatique permettant de répondre automatiquement à des questions posées par des humains, lors d'un échange fait en langue naturelle (comme le français). La discipline liée appartient aux domaines du traitement automatique de la langue et de la recherche d'information. Elle se démarque de l'interrogation de moteurs de recherche en cela qu'elle vise non seulement à récupérer les documents pertinents d'une collection de textes, mais également à formuler une réponse très ciblée à la question posée.
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Web scrapingLe web scraping, parfois appelé harvesting ou en français moissonnage, est une technique d'extraction des données de sites Web par l'utilisation d'un script ou d'un programme dans le but de les transformer et les réutiliser dans un autre contexte comme l'enrichissement de bases de données, le référencement ou l'exploration de données. Aux États-Unis, la société hiQ Labs utilise le web scraping sur les données de LinkedIn à des fins de recrutement.
Foreign-language writing aidA foreign language writing aid is a computer program or any other instrument that assists a non-native language user (also referred to as a foreign language learner) in writing decently in their target language. Assistive operations can be classified into two categories: on-the-fly prompts and post-writing checks. Assisted aspects of writing include: lexical, syntactic (syntactic and semantic roles of a word's frame), lexical semantic (context/collocation-influenced word choice and user-intention-driven synonym choice) and idiomatic expression transfer, etc.
Word senseIn linguistics, a word sense is one of the meanings of a word. For example, a dictionary may have over 50 different senses of the word "play", each of these having a different meaning based on the context of the word's usage in a sentence, as follows: We went to see the play Romeo and Juliet at the theater. The coach devised a great play that put the visiting team on the defensive. The children went out to play in the park. In each sentence different collocates of "play" signal its different meanings.
TaxonomyTaxonomy is the practice and science of categorization or classification. A taxonomy (or taxonomical classification) is a scheme of classification, especially a hierarchical classification, in which things are organized into groups or types. Among other things, a taxonomy can be used to organize and index knowledge (stored as documents, articles, videos, etc.), such as in the form of a library classification system, or a search engine taxonomy, so that users can more easily find the information they are searching for.