Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Diffusion models generating images conditionally on text, such as Dall-E 2 [51] and Stable Diffusion[53], have recently made a splash far beyond the computer vision com- munity. Here, we tackle the related problem of generating point clouds, both unconditi ...
The presence of waterborne enteric viruses in lake recreational water sites is not desired, as they may have a negative impact on human health. However, their concentrations, fate and transport in lakes remain poor understood. To date, the health risks pos ...
Electric vehicle charging facilities offer their capacity constrained electric charge and parking to users for a fee. As electric vehicle adoption grows, so too does the potential for excessive resource utilization. In this paper, we study how prices set b ...
Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been most ...
We use generalized Ray-Knight theorems, introduced by B. Toth in 1996, together with techniques developed for excited random walks as main tools for establishing positive and negative results concerning convergence of some classes of diffusively scaled sel ...
One major challenge in distributed learning is to efficiently learn for each client when the data across clients is heterogeneous or non iid (not independent or identically distributed). This provides a significant challenge as the data of the other client ...
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or ...
This paper presents a novel simulation approach for generating synthetic households, addressing several literature gaps from the methodological viewpoint. The generation of hierarchical datasets such as complete households is challenging since it must guar ...
The field of synthetic data is more and more present in our everyday life. The transportation domain is particularly interested in improving the methods for the generation of synthetic data in order to address the privacy and availability issue of real dat ...