Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les techniques de réduction de la variance telles que les variables antithétiques et l'échantillonnage d'importance dans l'estimation de Monte Carlo.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Explore les répliques, les méthodes de visualisation, les mesures de tendance centrale, les valeurs aberrantes, la dispersion, les moyennes, les résidus et les estimateurs impartiaux.
Introduit des concepts d'inférence statistique, en se concentrant sur l'estimation des paramètres, les estimateurs non biaisés et l'estimation moyenne à l'aide de variables aléatoires indépendantes.
Explore les modèles paramétriques dans l'analyse des données, couvrant les estimateurs de régression, les problèmes d'optimisation et les modèles statistiques.