Acide aminé glucoformateurUn acide aminé glucoformateur est un acide aminé susceptible d'être converti en glucose par la néoglucogenèse, par opposition aux acides aminés lipoformateurs et acides aminés cétoformateurs, qui sont convertis en corps cétoniques par la cétogenèse. La production de glucose à partir de ces acides aminés survient dans le foie lors du jeûne par conversion préalable des acides aminés en α-cétoacides, puis de ces cétoacides en glucose.
Acide bêta-hydroxybutyriqueβ-Hydroxybutyric acid, also known as 3-hydroxybutyric acid or BHB, is an organic compound and a beta hydroxy acid with the chemical formula CH3CH(OH)CH2CO2H; its conjugate base is β-hydroxybutyrate, also known as 3-hydroxybutyrate. β-Hydroxybutyric acid is a chiral compound with two enantiomers: D-β-hydroxybutyric acid and L-β-hydroxybutyric acid. Its oxidized and polymeric derivatives occur widely in nature. In humans, D-β-hydroxybutyric acid is one of two primary endogenous agonists of hydroxycarboxylic acid receptor 2 (HCA2), a Gi/o-coupled G protein-coupled receptor (GPCR).
Cétogenèseupright=1.5|vignette| Réactions de la cétogenèse. Les corps cétoniques (acétone, acétylacétate, ) sont surlignés. La cétogenèse, ou voie des corps cétoniques, est, après le cycle de Krebs, la deuxième utilisation la plus importante de l' par les cellules. Cette voie métabolique devient significative en période de jeûne prolongé ou en cas de diabète, quand l'organisme ne peut utiliser ses réserves de glucose pour produire l'ATP dont il a besoin.
Cétose (affection)vignette|Formule squelettique de l'acide bêta-hydroxybutyrique. Créé avec ACD/ChemSketch 10.0, Inkscape et vim. La cétose est un état du métabolisme (pathogène chez certaines espèces) caractérisé par l'accumulation de corps cétoniques dans l'organisme, et notamment dans le sang (hypercétonémie). Dans certaines circonstances comme le diabète de type I, cet état peut aussi conduire à celui, plus dangereux, d'acidocétose. Les diètes faibles en glucides ont pour effet de maintenir un faible taux d'insuline et un taux élevé de glucagon.
Acide aminé protéinogènevignette|Structure de la , parfois considérée comme un aminé protéinogène bien qu'elle ait une chaîne latérale identique à celle de la méthionine. Elle amorce la biosynthèse des protéines chez les procaryotes et dans les mitochondries et les chloroplastes des eucaryotes, mais pas dans le cytosol de ces derniers. Elle dérive de la méthionine par adjonction d'un groupe aldéhyde sur l'atome d'azote de l'amine primaire Un acide aminé protéinogène est un acide aminé incorporé dans les protéines lors de la traduction de l'ARN messager par les ribosomes.
NéoglucogenèseLa néoglucogenèse, aussi appelée gluconéogenèse, est la synthèse du glucose à partir de composés non glucidiques. On pourrait penser que c'est l'inverse de la glycolyse, mais les voies biochimiques empruntées, bien que comportant des points communs, ne sont pas identiques (en effet les étapes de la néoglucogenèse contournent les étapes irréversibles que l'on retrouve dans la glycolyse).
IsoleucineL’isoleucine (abréviations IUPAC-IUBMB : Ile et I) est un acide faisant partie des 20 acides aminés majeurs codés par le génome (exception faite de la Sélénocystéine) servant à la synthèse des protéines. Cet acide aminé est l'un des aminés essentiels pour l'homme, c'est-à-dire non synthétisable de novo par les cellules mais indispensable à son bon fonctionnement, son apport est donc alimentaire. Elle est codée sur les ARN messagers par les codons AUU, AUC et AUA. Elle forme un résidu apolaire aliphatique dans les protéines.
Acide aminé essentielvignette|Formule de la L-Lysine, un acide aminé dont la présence est cruciale en alimentation humaine. Un acide aminé essentiel, ou acide aminé indispensable (en anglais : IAA), est un acide aminé qui ne peut être synthétisé de novo par l'organisme ou qui est synthétisé à une vitesse insuffisante, et doit donc être apporté par l'alimentation, condition nécessaire au bon fonctionnement de l'organisme. Chez l'humain, neuf acides aminés sont considérés comme essentiels : le tryptophane, la lysine, la méthionine, la phénylalanine, la thréonine, la valine, la leucine, l'isoleucine et l'histidine.
Corps cétoniquesupright=0.67|vignette|Structure de l'acétone, de l'acétylacétate et du . Les corps cétoniques sont trois métabolites — l'acétylacétate (), le () et l'acétone () — produits par le processus de cétogenèse dans le foie. Ce sont de petites molécules liposolubles et hydrosolubles qui peuvent traverser les bicouches lipidiques par diffusion simple et mais peuvent également diffuser librement dans le sang et les tissus. Leur production se fait à partir d'acétyl-CoA.
Acétyl-coenzyme AL'acétyl-coenzyme A, usuellement écrite acétyl-CoA, est la forme « activée » de l'acide acétique, c'est-à-dire le thioester que forme ce dernier avec la coenzyme A. C'est une molécule à haut potentiel d'hydrolyse située au carrefour de plusieurs voies métaboliques importantes. L'acétyl-CoA peut ainsi résulter, sous l'action du complexe pyruvate déshydrogénase, de la décarboxylation oxydative du pyruvate, issu par exemple de la glycolyse, ou de la dégradation des acides gras par β-oxydation (hélice de Lynen) dans le cadre de la lipolyse (dégradation des lipides).