Knowledge representation and reasoningKnowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Ontologie (informatique)En informatique et en science de l'information, une ontologie est un modèle de données contenant des concepts et relations permettant de modéliser un ensemble de connaissances dans un domaine donné. Les concepts sont organisés dans un graphe dont les relations peuvent être : des relations sémantiques ; des relations de subsomption. Les ontologies sont employées dans l’intelligence artificielle, le web sémantique, le génie logiciel, l'informatique biomédicale ou encore l'architecture de l'information comme une forme de représentation de la connaissance au sujet d'un monde ou d'une certaine partie de ce monde.
Knowledge-based systemsA knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Base de connaissanceUne base de connaissance ou base de connaissances regroupe des connaissances spécifiques à un domaine spécialisé donné, sous une forme exploitable par un ordinateur. Elle peut contenir des règles (dans ce cas, on parle de base de règles), des faits ou d'autres représentations. Si elle contient des règles, un moteur d'inférence peut être utilisé pour déduire de nouveaux faits. Une autre manière de définir une base de connaissance est de dire qu'il s'agit d'une ontologie peuplée par des individus.
Web sémantiquevignette|300px|droite|Logo du W3C pour le Web sémantique Le Web sémantique, ou toile sémantique, est une extension du Web standardisée par le World Wide Web Consortium (W3C). Ces standards encouragent l'utilisation de formats de données et de protocoles d'échange normés sur le Web, en s'appuyant sur le modèle Resource Description Framework (RDF). Le Web sémantique est par certains qualifié de Web 3.0. Selon le W3C, . L'expression a été inventée par Tim Berners-Lee (inventeur du Web et directeur du W3C), qui supervise le développement des technologies communes du Web sémantique.
Moteur d'inférenceUn moteur d'inférence (du verbe « inférer » qui signifie « déduire ») est un logiciel (processus informatique) correspondant à un algorithme de simulation des raisonnements déductifs. Un moteur d'inférence permet aux systèmes experts de conduire des raisonnements logiques et de dériver des conclusions à partir d'une base de faits et d'une base de connaissances. Les moteurs d'inférence peuvent implémenter : une logique formelle d'ordre 0 (logique des propositions), d'ordre 0+, d'ordre 1 (logique des prédicats) ou d'ordre 2 avec une gestion d'hypothèses monotone ou non monotone, un chaînage avant, chaînage arrière ou mixte, une complétude déductive ou non.
Moteur de règlesEn informatique, un moteur de règles est un système logiciel qui exécute une ou plusieurs règles métiers dans un environnement de production. Ces règles peuvent venir de la législation, de politiques applicables ou d'autres sources. Un moteur de règle est généralement fourni comme composant d'un système de gestion de règles qui, parmi d'autres fonctionnalités, permet d'enregistrer, définir, classifier et gérer toutes les règles, vérifier la cohérence de leur définition, définir les relations entre différentes règles, et relier certaines d'entre elles à d'autres applications, qui sont affectées par ces règles ou nécessitées par celles-ci.
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Chaînage arrièreLe chaînage arrière ou raisonnement arrière est une méthode d'inférence qui peut être décrite (en termes profanes) comme une manière de travailler en remontant en arrière de l'objectif. Il est utilisé en intelligence artificielle, dans un système expert à base de règles ou encore dans un assistant de preuve. En théorie des jeux, son utilisation dans les sous-jeux pour trouver une solution au jeu est appelée raisonnement rétrograde.