In computer science, a rule-based system is used to store and manipulate knowledge to interpret information in a useful way. It is often used in artificial intelligence applications and research.
Normally, the term rule-based system is applied to systems involving human-crafted or curated rule sets. Rule-based systems constructed using automatic rule inference, such as rule-based machine learning, are normally excluded from this system type.
A classic example of a rule-based system is the domain-specific expert system that uses rules to make deductions or choices. For example, an expert system might help a doctor choose the correct diagnosis based on a cluster of symptoms, or select tactical moves to play a game.
Rule-based systems can be used to perform lexical analysis to compile or interpret computer programs, or in natural language processing.
Rule-based programming attempts to derive execution instructions from a starting set of data and rules. This is a more indirect method than that employed by an imperative programming language, which lists execution steps sequentially.
A typical rule-based system has four basic components:
A list of rules or rule base, which is a specific type of knowledge base.
An inference engine or semantic reasoner, which infers information or takes action based on the interaction of input and the rule base. The interpreter executes a production system program by performing the following match-resolve-act cycle:
Match: In this first phase, the left-hand sides of all productions are matched against the contents of working memory. As a result a conflict set is obtained, which consists of instantiations of all satisfied productions. An instantiation of a production is an ordered list of working memory elements that satisfies the left-hand side of the production.
Conflict-Resolution: In this second phase, one of the production instantiations in the conflict set is chosen for execution. If no productions are satisfied, the interpreter halts.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course gives an introduction to the fundamental concepts and methods of the Digital Humanities, both from a theoretical and applied point of view. The course introduces the Digital Humanities cir
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
L'algorithme de Rete est un algorithme performant de filtrage par motif (« pattern matching ») intervenant dans l'implémentation de systèmes de règles de production. L'algorithme a été conçu par Charles L. Forgy de l'université Carnegie-Mellon, tout d'abord publié comme une note de travail en 1974, puis plus tard élaboré dans sa thèse de doctorat en 1979 et dans une publication de 1982. Rete est devenu la base de nombreux systèmes experts tels que Clips, Jess, Drools, Ilog JRules, Soar...
Un système expert est un outil capable de reproduire les mécanismes cognitifs d'un expert, dans un domaine particulier. Il s'agit de l'une des voies tentant d'aboutir à l'intelligence artificielle. Plus précisément, un système expert est un logiciel capable de répondre à des questions, en effectuant un raisonnement à partir de faits et de règles connues. Il peut servir notamment comme outil d'aide à la décision. Le premier système expert a été Dendral. Il permettait d'identifier les constituants chimiques.
Un moteur d'inférence (du verbe « inférer » qui signifie « déduire ») est un logiciel (processus informatique) correspondant à un algorithme de simulation des raisonnements déductifs. Un moteur d'inférence permet aux systèmes experts de conduire des raisonnements logiques et de dériver des conclusions à partir d'une base de faits et d'une base de connaissances. Les moteurs d'inférence peuvent implémenter : une logique formelle d'ordre 0 (logique des propositions), d'ordre 0+, d'ordre 1 (logique des prédicats) ou d'ordre 2 avec une gestion d'hypothèses monotone ou non monotone, un chaînage avant, chaînage arrière ou mixte, une complétude déductive ou non.
Explore les problèmes de diagnostic, en mettant l'accent sur l'enlèvement et la cohérence dans la recherche de composants défectueux en fonction des symptômes et des mesures observés.
Couvre l'entraînement des réseaux neuronaux en utilisant la descente de gradient stochastique, les règles de la chaîne, le calcul des gradients, la décroissance du poids et le décrochage.
Various endeavours into semantic web technologies and ontology engineering have been made within the organisation of cultural data, facilitating public access to digital assets. Although models for conceptualising objects have reached a certain level of ma ...
2023
Under periodic lean/rich operation generated by repeated O2 pulses (O2-dithering), the abatement of CH4 and NO is enhanced compared to static operation. However, it is not well understood how the dithering parameters (pulse amplitude and frequency) affect ...
ELSEVIER SCIENCE SA2023
, , , , ,
Nanoparticle-based drug delivery systems have the potential for increasing the efficiency of chemotherapeutics by enhancing the drug accumulation at specific target sites, therebyreducing adverse side effects and mitigating patient acquired resistance. In ...