Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
La volatilité (en finance) est l'ampleur des variations du cours d'un actif financier. Elle sert de paramètre de quantification du risque de rendement et de prix d'un actif financier. Lorsque la volatilité est élevée, la possibilité de gain est plus importante, mais le risque de perte l'est aussi. C'est par exemple le cas de l'action d'une société plus endettée, ou disposant d'un potentiel de croissance plus fort et donc d'un cours plus élevé que la moyenne.
La volatilité stochastique est utilisée dans le cadre de la finance quantitative, pour évaluer des produits dérivés, tels que des options. Le nom provient du fait que le modèle traite la volatilité du sous-jacent comme un processus aléatoire, fonction de variables d'états telles que le prix du sous-jacent, la tendance qu'a la volatilité, à moyen terme, à faire revenir le prix vers une valeur moyenne, la variance du processus de la volatilité, etc.
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given expiration, options whose strike price differs substantially from the underlying asset's price command higher prices (and thus implied volatilities) than what is suggested by standard option pricing models. These options are said to be either deep in-the-money or out-of-the-money.
In financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equal to the current market price of said option. A non-option financial instrument that has embedded optionality, such as an interest rate cap, can also have an implied volatility. Implied volatility, a forward-looking and subjective measure, differs from historical volatility because the latter is calculated from known past returns of a security.
En finance, une option est un produit dérivé qui établit un contrat entre un acheteur et un vendeur. L'acheteur de l'option obtient le droit, et non pas l'obligation, d'acheter (call) ou de vendre (put) un actif sous-jacent à un prix fixé à l'avance (strike), pendant un temps donné ou à une date fixée. Ce contrat peut se faire dans une optique de spéculation sur le prix futur de l'actif sous-jacent, ou d'assurance contre une évolution défavorable de ce prix.
L'évaluation financière est l'estimation de la valeur (c'est-à-dire du prix potentiel): des actifs et engagements financiers (actions, obligations, options, contrats d'épargne) et des entreprises évaluation d'entreprise) Tout placement financier étant fait dans une optique future, les principaux paramètres d’estimation de la valeur du placement sont les gains que l'on attend et les risques que l'on perçoit. finance, actif financier, évaluation du prix d'une action, évaluation d'option, évaluation financière