Résumé
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X. We can also say that the measure is a single atom at x; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence. The Dirac measures are the extreme points of the convex set of probability measures on X. The name is a back-formation from the Dirac delta function; considered as a Schwartz distribution, for example on the real line, measures can be taken to be a special kind of distribution. The identity which, in the form is often taken to be part of the definition of the "delta function", holds as a theorem of Lebesgue integration. Let δx denote the Dirac measure centred on some fixed point x in some measurable space (X, Σ). δx is a probability measure, and hence a finite measure. Suppose that (X, T) is a topological space and that Σ is at least as fine as the Borel σ-algebra σ(T) on X. δx is a strictly positive measure if and only if the topology T is such that x lies within every non-empty open set, e.g. in the case of the trivial topology {∅, X}. Since δx is probability measure, it is also a locally finite measure. If X is a Hausdorff topological space with its Borel σ-algebra, then δx satisfies the condition to be an inner regular measure, since singleton sets such as {x} are always compact. Hence, δx is also a Radon measure. Assuming that the topology T is fine enough that {x} is closed, which is the case in most applications, the support of δx is {x}.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
MATH-206: Analysis IV
En son coeur, c'est un cours d'analyse fonctionnelle pour les physiciens et traite les bases de théorie de mesure, des espaces des fonctions et opérateurs linéaires.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
Afficher plus
Publications associées (34)