En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l'intégration et à la mesure, et le résultat de l'intégration d'une fonction à valeurs réelles définie sur (ou sur ) muni de la mesure de Lebesgue.
Généralisant l'intégrale de Riemann, l'intégrale de Lebesgue joue un rôle important en analyse, en théorie des probabilités et dans beaucoup d'autres domaines des mathématiques.
Dans les cas simples, l'intégrale d'une fonction positive f peut être vue comme l'aire comprise entre l'axe des x (l'axe horizontal) et la courbe de la fonction f. En étendant cette notion, la construction de l'intégrale de Lebesgue s’applique à un ensemble plus riche de fonctions définies sur des espaces plus généraux que ou .
Après la construction de l'intégrale de Cauchy-Riemann, l’intérêt s’est porté sur des extensions du théorème fondamental du calcul intégral :
Les études réalisées sur l'intégrale de Riemann aboutissent au théorème suivant qui est le « meilleur qu'on sache démontrer » :
Cependant, il existe des fonctions F dérivables sur [a, b] sans que leur dérivée soit Riemann-intégrable.
L'objectif premier de l'intégrale de Lebesgue est de lever cette restriction afin de satisfaire à l'énoncé :
Par la suite, d’autres constructions d'une intégrale ont été élaborées (intégrale de Kurzweil-Henstock, Denjoy, Perron, Khintchine, etc.) et elles satisfont à l'énoncé plus général
Avant les travaux d’Henri Lebesgue, la théorie de l'intégration s'appuyait sur l'intégrale de Riemann, mais celle-ci était plutôt insatisfaisante pour diverses raisons : problème de définition « efficace » des intégrales dites impropres (par exemple l’intégrale de Dirichlet), difficulté à établir des théorèmes de convergence...
En concevant son intégrale, Lebesgue l'a lui-même comparée à l'intégrale de Riemann : Pour comprendre cette phrase, il faut préciser que l'intégration de Riemann « parcourt » le segment et exploite au fur et à mesure la « hauteur » y de la fonction, alors que l'intégration de Lebesgue exploite la « taille » des ensembles de niveau f = y pour toutes les valeurs de y.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Learn the basis of Lebesgue integration and Fourier analysis
An introduction to methods of harmonic analysis.
Covers convergence of Fourier series, Hilbert transform, Calderon-Zygmund theory, Fourier restriction, and applications to PDE.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
En mathématiques, le théorème de convergence monotone (ou théorème de Beppo Levi) est un résultat de la théorie de l'intégration de Lebesgue. Il permet de démontrer le lemme de Fatou et le théorème de convergence dominée. Ce théorème indique que pour une suite croissante de fonctions mesurables positives on a toujours la convergence de la suite de leurs intégrales vers l'intégrale de la limite simple. Le théorème autorise donc, pour une telle suite de fonctions, à intervertir les symboles et .
En mathématiques et en analyse : Une fonction simple est une fonction numérique dont l' est constituée d'un nombre fini de valeurs réelles (ou éventuellement complexes) ; Une fonction étagée est une fonction simple définie sur un espace mesurable et qui est elle-même une fonction mesurable ; Une fonction en escalier est une fonction étagée définie sur l’ensemble des réels et dont les valeurs (réelles) sont constantes sur des intervalles : ce sont donc des fonctions constantes par morceaux.
vignette|Le triangle de Sierpiński est un exemple d'ensemble nul de points dans R 2 \mathbb {R} ^{2}. En théorie de la mesure, dans un espace mesuré, un ensemble négligeable est un ensemble de mesure nulle ou une partie d'un tel ensemble. La définition peut dépendre de la mesure choisie : deux mesures sur un même espace mesurable qui ont les mêmes ensembles de mesure nulle sont dites équivalentes. À un niveau élémentaire, il est possible d'aborder la notion d'ensemble négligeable pour un certain nombre d'espaces (dont la droite réelle) sans avoir à introduire une mesure.
We construct divergence-free Sobolev vector fields in C([0,1];W-1,W-r(T-d;Rd)) with r < d and d\geq 2 which simultaneously admit any finite number of distinct positive solutions to the continuity equation. These vector fields are then shown to have at leas ...
Fluid antenna systems (FAS) are an emerging technology that promises a significant diversity gain even in the smallest spaces. It consists of a freely moving antenna in a small linear space to pick up the strongest received signal. Previous works in the li ...
Piscataway2023
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Explore les méthodes de différenciation et d'intégration numériques, en mettant l'accent sur la précision des différences finies dans le calcul des dérivées et des intégrales.