Concept

Exponentiation rapide

Résumé
En informatique, l'exponentiation rapide est un algorithme utilisé pour calculer rapidement de grandes puissances entières. En anglais, cette méthode est aussi appelée square-and-multiply (« mettre au carré et multiplier »). La première façon de calculer une puissance x est de multiplier x par lui-même n fois. Cependant, il existe des méthodes bien plus efficaces, où le nombre d'opérations nécessaires n'est plus de l'ordre de n mais de l'ordre de . Par exemple, si l'on écrit en base 2 pour , on constate que Il faut ainsi d opérations pour calculer tous les , puis d opérations supplémentaires pour former le produit des . Le nombre total d'opérations est donc 2d, qui est bien de l'ordre du logarithme de n. Cette simple remarque algébrique conduit à l'algorithme présenté dans la section suivante. Soit n un entier strictement supérieur à 1, supposons que l'on sache calculer, pour chaque réel x, toutes les puissances xk de x, pour tout k, tel que 1 ≤ k < n. Si n est pair alors x = (x). Il suffit alors de calculer y pour y = x. Si n est impair et n > 1, alors x = x(x). Il suffit de calculer y pour y = x et de multiplier le résultat par x. Cette remarque nous amène à l'algorithme récursif suivant qui calcule xn pour un entier strictement positif n : En comparant à la méthode ordinaire qui consiste à multiplier x par lui-même n – 1 fois, cet algorithme nécessite de l'ordre de O(log n) multiplications et ainsi accélère le calcul de xn de façon spectaculaire pour les grands entiers. La méthode fonctionne dans tout semi-groupe et est souvent utilisée pour calculer des puissances de matrices, et particulièrement en cryptographie, mais aussi pour calculer les puissances dans un anneau d'entiers modulo q. Elle peut être aussi utilisée pour calculer des puissances d'un élément dans un groupe, en utilisant pour les puissances négatives la règle : puissance(x, –n) = (puissance(x, n)). C'est cette méthode que l'on applique lorsque l'on effectue la multiplication de deux nombres chiffre par chiffre en base 2 : le groupe est .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Personnes associées (1)