Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Explore le SVM non linéaire en utilisant des noyaux pour la séparation des données dans des espaces de dimension supérieure, optimisant l'entraînement avec des noyaux pour éviter des transformations explicites.
Discute des méthodes du noyau dans l'apprentissage automatique, en se concentrant sur la régression du noyau et les machines vectorielles de support, y compris leurs formulations et applications.