Concepts associés (7)
Dérivée logarithmique
En mathématiques et plus particulièrement en analyse et en analyse complexe, la dérivée logarithmique d'une fonction f dérivable ne s'annulant pas est la fonction : où f est la dérivée de f. Lorsque la fonction f est à valeurs réelles strictement positives, la dérivée logarithmique coïncide avec la dérivée de la composée de f par la fonction logarithme ln, comme le montre la formule de la dérivée d'une composée de fonctions.
Quotient rule
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
Règle du produit
En analyse mathématique, la règle du produit, aussi appelée règle de Leibniz, est une formule utilisée afin de trouver les dérivées de produits de fonctions. Sous sa forme la plus simple, elle s'énonce ainsi : En notation de Leibniz, cette formule s'écrit : Une application importante de la règle du produit est la méthode d'intégration par parties. Soit la fonction définie par : Pour trouver sa dérivée avec la règle du produit, on pose et . Les fonctions , et sont partout dérivables car polynomiales.
Différence finie
En mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.
Dérivée
En mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Logarithme
vignette|Tracés des fonctions logarithmes en base 2, e et 10. En mathématiques, le logarithme (de logos : rapport et arithmos : nombre) de base d'un nombre réel strictement positif est la puissance à laquelle il faut élever la base pour obtenir ce nombre. Dans le cas le plus simple, le logarithme compte le nombre d'occurrences du même facteur dans une multiplication répétée : comme 1000 = 10×10×10 = 10, le logarithme en base 10 de 1000 est 3. Le logarithme de en base est noté : . John Napier a développé les logarithmes au début du .
Calcul infinitésimal
Le calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.