K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Stable ∞-categoryIn , a branch of mathematics, a stable ∞-category is an such that (i) It has a zero object. (ii) Every morphism in it admits a and cofiber. (iii) A triangle in it is a fiber sequence if and only if it is a cofiber sequence. The of a stable ∞-category is . A stable ∞-category admits finite s and colimits. Examples: the of an and the ∞-category of spectra are both stable. A stabilization of an C having finite limits and base point is a functor from the stable ∞-category S to C. It preserves limit.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.
Ensemble simplicialEn mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.