Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la programmation dynamique pour un contrôle optimal, en se concentrant sur la stabilité, la politique stationnaire et les solutions récursives.
Présente les bases de l'apprentissage par renforcement, couvrant les états discrets, les actions, les politiques, les fonctions de valeur, les PDM et les politiques optimales.
Explore l'algorithme SARSA pour l'apprentissage par renforcement, en mettant l'accent sur la mise à jour des valeurs Q et l'importance de l'exploration dans l'apprentissage par récompenses.
Couvre le calcul de la fonction de coût pour les systèmes de commande multivariables en utilisant le cadre LQR et en appliquant la descente de gradient pour améliorer le contrôleur.
Couvre l’apprentissage par renforcement d’horizons finis, les politiques non stationnaires et la variante optimiste de l’Optimisation Proximale des Politiques (OPPO).