PseudoconvexityIn mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set is a relatively compact subset of for all real numbers In other words, a domain is pseudoconvex if has a continuous plurisubharmonic exhaustion function.
Domaine d'holomorphieEn mathématiques et plus précisément en analyse complexe à plusieurs variables, on dit qu'un domaine (i.e. un ouvert connexe), est un domaine d'holomorphie s'il existe une fonction analytique dans et non prolongeable ailleurs. Dans le cas particulier des domaines plans, cette propriété est triviale. Mais ce n'est plus vrai dans le cas général comme l'explicite le théorème de Hartogs : il suffit par exemple de considérer dans lequel toute fonction analytique se prolonge nécessairement à l'espace tout entier.
Fonction de plusieurs variables complexesLa théorie des fonctions de plusieurs variables complexes est une branche des mathématiques traitant des fonctions à variables complexes. On définit de cette manière une fonction de Cn dans C, dont on peut noter les variables . L'analyse complexe correspond au cas . H. Cartan: Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961. C. Laurent-Thiébaut : Théorie des fonctions holomorphes de plusieurs variables. EDP Sciences, 1997. V.S.
Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.