In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using the semigroup operation) is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.
An important special case is a monoid action or act, in which the semigroup is a monoid and the identity element of the monoid acts as the identity transformation of a set. From a point of view, a monoid is a with one object, and an act is a functor from that category to the . This immediately provides a generalization to monoid acts on objects in categories other than the category of sets.
Another important special case is a transformation semigroup. This is a semigroup of transformations of a set, and hence it has a tautological action on that set. This concept is linked to the more general notion of a semigroup by an analogue of Cayley's theorem.
(A note on terminology: the terminology used in this area varies, sometimes significantly, from one author to another. See the article for details.)
Let S be a semigroup. Then a (left) semigroup action (or act) of S is a set X together with an operation • : S × X → X which is compatible with the semigroup operation ∗ as follows:
for all s, t in S and x in X, s • (t • x) = (s ∗ t) • x.
This is the analogue in semigroup theory of a (left) group action, and is equivalent to a semigroup homomorphism into the set of functions on X. Right semigroup actions are defined in a similar way using an operation • : X × S → X satisfying (x • a) • b = x • (a ∗ b).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematics and theoretical computer science, a semiautomaton is a deterministic finite automaton having inputs but no output. It consists of a set Q of states, a set Σ called the input alphabet, and a function T: Q × Σ → Q called the transition function. Associated with any semiautomaton is a monoid called the characteristic monoid, input monoid, transition monoid or transition system of the semiautomaton, which acts on the set of states Q.
En informatique théorique, un système de transition d'états est une forme de machine abstraite utilisée pour modéliser un ou des calcul(s). Un système de transition d'états est constitué d'un ensemble d'états et d'un ensemble de transitions d'un état à un autre, qui peuvent être étiquetées ; une même étiquette peut apparaître sur plusieurs transitions. Si l'ensemble des étiquettes est un singleton, on peut omettre l'étiquetage. Les systèmes d'états-transitions sont des graphes orientés.
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Couvre les points fixes, les orbites et les stabilisateurs dans les variétés G, y compris les propriétés des sous-groupes fermés et des actions fidèles.
We show that the finitely generated simple left orderable groups G(rho) constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-01900880- ...
CAMBRIDGE UNIV PRESS2021
To achieve conservation objectives for threatened and endangered species, managers must choose among potential recovery actions based on their efficacy. Yet, a lack of standardization in defining how conservation actions support recovery objectives can imp ...
Measuring the intensity of events is crucial for monitoring and tracking armed conflict. Advances in automated event extraction have yielded massive data sets of '' who did what to whom '' micro-records that enable datadriven approaches to monitoring confl ...