CS-233: Introduction to machine learningMachine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MGT-499: Statistics and data scienceThis class provides a hands-on introduction to statistics and data science, with a focus on causal inference, applications to sustainability issues using Python, and dissemination of scientific result
PHYS-339: Advanced computational physicsThe course covers dense/sparse linear algebra, variational methods in quantum mechanics, and Monte Carlo techniques. Students implement algorithms for complex physical problems. Combines theory with c
PHYS-216: Mathematical methods (for SPH)Ce cours est un complément aux cours d'analyse et d'algèbre linéaire qui apporte des méthodes et des techniques mathématiques supplémentaires requises pour les cours de physique de 3e année, notamment
MATH-611: Scientific programming for EngineersThe students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, ai
MGT-502: Data science and machine learningHands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
ME-371: Discretization methods in fluidsCe cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.
Les concepts fondamentaux sont présentés dans le cadre de la méthode d
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann