PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
Abus de notationEn mathématiques, un abus de notation est l'utilisation de symboles hors de leur usage d'origine de façon à résumer une expression, au risque de contrevenir à un formalisme en cours, voire d'obtenir une expression ambiguë. Par exemple, la notation , utilisée au pour désigner l'unité imaginaire, est abusive dans le formalisme actuel où le symbole radical est réservé aux nombres réels positifs. Un abus de notation courant est l'identification entre deux objets mathématiques différents, c'est-à-dire l'utilisation de l'un pour l'autre.
Groupe ordonnéUn groupe ordonné est un groupe muni d'une relation d'ordre respectée par les translations. Soit (G,.) un groupe (la loi du groupe étant notée multiplicativement) et ≤ une relation d'ordre sur G. On dit que celle-ci est compatible avec la loi du groupe lorsque pour tous éléments x, y et z du groupe, la relation x ≤ y entraîne les deux relations zx ≤ zy et xz ≤ yz. Un groupe ordonné est un ensemble muni simultanément d'une loi de groupe et d'une relation d'ordre compatible.
Algèbre des termesEn logique mathématique, l'algèbre des termes est la structure algébrique libre sur une signature. Si la signature ne contient qu'un symbole de fonction binaire f, alors l'algèbre des termes sur un ensemble de variables X est exactement le magma libre sur X. Si x, y, z sont des variables de X, cette algèbre des termes contient les éléments suivants : x, y, z, f(x, x), f(x, f(x, y)), f(f(f(y, f(x), f(z, z)), y, x), etc. Le problème de décision associé à l'algèbre des termes est décidable et non élémentaire.
Loi d'absorptionEn algèbre, la loi d'absorption est une identité reliant deux lois de composition interne. Deux lois de composition interne et vérifient la loi d'absorption si : Soit un ensemble muni de deux lois de composition interne et . Si ces lois sont commutatives, associatives et vérifient la loi d'absorption, la structure algébrique résultante est un treillis.
Injection canoniqueIn mathematics, if is a subset of then the inclusion map (also inclusion function, insertion, or canonical injection) is the function that sends each element of to treated as an element of A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections.
Domaine booléenEn mathématiques et en algèbre abstraite, un domaine booléen est un ensemble composé d'exactement deux éléments qui comprennent les informations vrai et faux. En logique, les mathématiques et l'informatique théorique, un domaine booléen est généralement écrit par {0, 1}, {faux, vrai}, {F, V}, {⊥, ⊤} ou . La structure algébrique qui se forme naturellement sur un domaine booléen, est l'algèbre de Boole à deux éléments. L'objet initial dans la catégorie des treillis est un domaine booléen.