Matrice compagnonEn algèbre linéaire, la matrice compagnon du polynôme unitaire est la matrice carrée suivante : mais il existe d'autres conventions : la matrice transposée de celle ci-dessus ; une variante de cette transposée : la matrice Le polynôme caractéristique de C(p) est égal à p (ou (–1)p selon la convention choisie pour le polynôme caractéristique) ; en ce sens, la matrice C(p) est la « compagne » du polynôme p. Si le polynôme p possède n racines distinctes λ1, ...
Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Smith normal formIn mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix.
Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Invariant factorThe invariant factors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain. If is a PID and a finitely generated -module, then for some integer and a (possibly empty) list of nonzero elements for which . The nonnegative integer is called the free rank or Betti number of the module , while are the invariant factors of and are unique up to associatedness.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Matrices semblablesEn mathématiques, deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que . La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes. Il ne faut pas confondre la notion de matrices semblables avec celle de matrices équivalentes. En revanche, si deux matrices sont semblables, alors elles sont équivalentes.
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.