In mathematics, specifically group theory, the identity component of a group G refers to several closely related notions of the largest connected subgroup of G containing the identity element. In point set topology, the identity component of a topological group G is the connected component G0 of G that contains the identity element of the group. The identity path component of a topological group G is the path component of G that contains the identity element of the group. In algebraic geometry, the identity component of an algebraic group G over a field k is the identity component of the underlying topological space. The identity component of a group scheme G over a base scheme S is, roughly speaking, the group scheme G0 whose fiber over the point s of S is the connected component (Gs)0 of the fiber Gs, an algebraic group. The identity component G0 of a topological or algebraic group G is a closed normal subgroup of G. It is closed since components are always closed. It is a subgroup since multiplication and inversion in a topological or algebraic group are continuous maps by definition. Moreover, for any continuous automorphism a of G we have a(G0) = G0. Thus, G0 is a characteristic subgroup of G, so it is normal. The identity component G0 of a topological group G need not be open in G. In fact, we may have G0 = {e}, in which case G is totally disconnected. However, the identity component of a locally path-connected space (for instance a Lie group) is always open, since it contains a path-connected neighbourhood of {e}; and therefore is a clopen set. The identity path component of a topological group may in general be smaller than the identity component (since path connectedness is a stronger condition than connectedness), but these agree if G is locally path-connected. The quotient group G/G0 is called the group of components or component group of G. Its elements are just the connected components of G. The component group G/G0 is a discrete group if and only if G0 is open.
Donna Testerman, Martin W. Liebeck