Concept

Polynôme d'Alexander

Résumé
En mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984. La définition formelle suivante nécessite des connaissances importantes en homologie ; il est cependant possible, comme on le verra au paragraphe suivant, de calculer sans elle le polynôme d'Alexander en pratique, ce qui pourrait en constituer une définition opérationnelle, mais on ne peut alors comprendre la raison profonde de l'intérêt de ce calcul, ni les propriétés du polynôme. Soit K un nœud de la 3-sphère. Soit X le revêtement cyclique infini du complément du nœud K. Il y a un automorphisme t de ce revêtement. Soit alors le premier groupe d'homologie (à coefficients entiers) de X. La transformation t agit sur ce groupe, et nous pouvons donc considérer comme un module sur , appelé invariant d'Alexander ou module d'Alexander. Ce module est de présentation finie ; une matrice de présentation de ce module, à r colonnes et s lignes s'il y a r générateurs et s relations, s'appelle une matrice d'Alexander. Alexander a démontré que r est toujours inférieur ou égal à s, on considère alors l'idéal engendré par les mineurs d'ordre r de la matrice ; c'est l' d'ordre 0, appelé idéal d'Alexander, et il ne dépend pas du choix de la matrice de présentation. Alexander a également démontré que cet idéal est toujours principal, un de ses générateurs est appelé polynôme d'Alexander du nœud. Ce polynôme n'étant défini qu'à une multiplication près par un monôme de Laurent , on fixe en général une forme unique. Par exemple, le choix de normalisation d'Alexander consiste à prendre le polynôme de valuation positive et de terme constant strictement positif.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.