In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.
Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the symplectic version, this is the free loop space of a symplectic manifold with the symplectic action functional. For the (instanton) version for three-manifolds, it is the space of SU(2)-connections on a three-dimensional manifold with the Chern–Simons functional. Loosely speaking, Floer homology is the Morse homology of the function on the infinite-dimensional manifold. A Floer chain complex is formed from the abelian group spanned by the critical points of the function (or possibly certain collections of critical points). The differential of the chain complex is defined by counting the function's gradient flow lines connecting certain pairs of critical points (or collections thereof). Floer homology is the homology of this chain complex.
The gradient flow line equation, in a situation where Floer's ideas can be successfully applied, is typically a geometrically meaningful and analytically tractable equation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
En mathématiques, et plus précisément en théorie des nœuds, le polynôme d'Alexander est un invariant de nœuds qui associe un polynôme à coefficients entiers à chaque type de nœud. C'est le premier découvert ; il l'a été par James Waddell Alexander II, en 1923. En 1969, John Conway en montra une version, appelée à présent le polynôme d'Alexander-Conway, pouvant être calculé à l'aide d'une « » (skein relation), mais l'importance n'en fut pas comprise avant la découverte du polynôme de Jones en 1984.
En mathématiques, la catégorification est le processus qui consiste à remplacer des théorèmes de la théorie des ensembles par des analogues de la théorie des catégories. La catégorification, lorsqu'elle est effectuée avec succès, remplace les ensembles par des catégories, les fonctions par des foncteurs et les équations par des isomorphismes naturels de foncteurs qui possèdent des propriétés supplémentaires. Il faut noter que le but est d'étudier l'objet qui a été « catégorifié » grâce aux structures supplémentaires et aux méthodes abstraites auxquelles on accède par cette construction.
Andreas Floer [fløːɐ] (1956-1991) est un mathématicien allemand qui a contribué aux domaines de la géométrie, de la topologie et de la physique mathématique. Il formula l'homologie de Floer, important outil dans ces domaines. Il est étudiant à l'université de Bochum et reçoit le diplôme de mathématiques (Diplom-Mathematiker) en 1982. Il intègre par la suite l'université de Californie à Berkeley, où il commence un travail de doctorat sur les et les 3-variétés sous la direction de Clifford Taubes.
Introduit les axiomes d'Eilenberg-Steenrod dans la théorie de l'homologie, définissant des propriétés telles que l'invariance et l'exactitude de l'homotopie.
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
Given a hyperelliptic hyperbolic surface S of genus g >= 2, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any lambda is an element of (0, 1) there exists a constant N(lambda) such that every such ...