Divergence (statistiques)En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Partition function (mathematics)The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution. The partition function occurs in many problems of probability theory because, in situations where there is a natural symmetry, its associated probability measure, the Gibbs measure, has the Markov property.
Informationvignette|redresse=0.6|Pictogramme représentant une information. L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« information » est ce qui donne une forme à l'esprit. Elle vient du verbe latin « informare », qui signifie « donner forme à » ou « se former une idée de ». L'information désigne à la fois le message à communiquer et les symboles utilisés pour l'écrire. Elle utilise un code de signes porteurs de sens tels qu'un alphabet de lettres, une base de chiffres, des idéogrammes ou pictogrammes.
Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.
Divergence de BregmanEn mathématiques, la divergence de Bregman est une mesure de la différence entre deux distributions dérivée d'une fonction potentiel U à valeurs réelles strictement convexe et continûment différentiable. Le concept a été introduit par en 1967. Par l'intermédiaire de la transformation de Legendre, au potentiel correspond un potentiel dual et leur différentiation donne naissance à deux systèmes de coordonnées duaux. Soit une fonction à valeurs réelles, strictement convexe et continûment différentiable définie sur un domaine convexe fermé .
Inégalité de Gibbsvignette|Willard Gibbs. En théorie de l'information, l'inégalité de Gibbs, nommée en l'honneur de Willard illard Gibbs.Gibbs, porte sur l'entropie d'une distribution de probabilités. Elle sert à prouver de nombreux résultats en théorie de l'information. Soient deux distributions de probabilités et , alors Le cas d'égalité se produit si et seulement si pour tout . D'après l'inégalité de Jensen, puisque le logarithme est concave, Cela équivaut à et montre donc l'inégalité.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.