The Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the l1 norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation.
The Hamming weight is named after Richard Hamming although he did not originate the notion. The Hamming weight of binary numbers was already used in 1899 by James W. L. Glaisher to give a formula for the number of odd binomial coefficients in a single row of Pascal's triangle. Irving S. Reed introduced a concept, equivalent to Hamming weight in the binary case, in 1954.
Hamming weight is used in several disciplines including information theory, coding theory, and cryptography. Examples of applications of the Hamming weight include:
In modular exponentiation by squaring, the number of modular multiplications required for an exponent e is log2 e + weight(e). This is the reason that the public key value e used in RSA is typically chosen to be a number of low Hamming weight.
The Hamming weight determines path lengths between nodes in Chord distributed hash tables.
IrisCode lookups in biometric databases are typically implemented by calculating the Hamming distance to each stored record.
In computer chess programs using a bitboard representation, the Hamming weight of a bitboard gives the number of pieces of a given type remaining in the game, or the number of squares of the board controlled by one player's pieces, and is therefore an important contributing term to the value of a position.
Hamming weight can be used to efficiently compute find first set using the identity ffs(x) = pop(x ^ (x - 1)). This is useful on platforms such as SPARC that have hardware Hamming weight instructions but no hardware find first set instruction.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Le code de Hadamard est un code correcteur, nommé d'après Jacques Hadamard, à taux de transfert extrêmement faible mais à grande distance, couramment utilisé pour la détection et la correction d'erreurs lors de la transmission de messages sur des canaux très bruyants ou peu fiables. Dans la notation standard de la théorie du codage pour les codes en bloc, le code de Hadamard est un code , c'est-à-dire un code linéaire sur un alphabet binaire, a une longueur de bloc de , la longueur (ou la dimension) du message , et une distance minimale .
En théorie des codes, un code de Golay est un code correcteur d'erreurs pouvant être binaire ou tertiaire, nommé en l'honneur de son inventeur, Marcel Golay. Il y a deux types de codes de Golay binaire. Le code binaire étendu de Golay encode 12 bits de données dans un mot de code de 24 bits de long de telle manière que n'importe quelle erreur sur trois bits puisse être corrigée et n'importe quelle erreur sur quatre bits puisse être détectée.
We start this short note by introducing two remarkable mathematical objects: the E8E8 root lattice Lambda8Lambda8 in 8-dimensional Euclidean space and the Leech lattice Lambda24Lambda24 in 24-dimensional space. These two lattices stand out among their lat ...
2021
This thesis presents, firstly, an introduction to the current state of the art in isogeny-based cryptography, and secondly, a side-channel differential power analysis of SIKE—an isogeny-based key exchange algorithm—in semi-static mode. These attacks have b ...
The concepts of pseudocodeword and pseudoweight play a fundamental role in the finite-length analysis of LDPC codes. The pseudoredundancy of a binary linear code is defined as the minimum number of rows in a parity-check matrix such that the corresponding ...