**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Potts model

Résumé

In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenomena of solid-state physics. The strength of the Potts model is not so much that it models these physical systems well; it is rather that the one-dimensional case is exactly solvable, and that it has a rich mathematical formulation that has been studied extensively.
The model is named after Renfrey Potts, who described the model near the end of his 1951 Ph.D. thesis. The model was related to the "planar Potts" or "clock model", which was suggested to him by his advisor, Cyril Domb. The four-state Potts model is sometimes known as the Ashkin–Teller model, after Julius Ashkin and Edward Teller, who considered an equivalent model in 1943.
The Potts model is related to, and generalized by, several other models, including the XY model, the Heise

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Personnes associées (2)

Publications associées (18)

Chargement

Chargement

Chargement

Concepts associés (7)

Modèle d'Ising

Le modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états.
L'exemple principal est le ferroma

Modèle XY

Le modèle XY ou modèle planaire est un modèle étudié en mécanique statistique.
Il décrit un système dont les degrés de liberté sont des vecteurs bidimensionnels \mathbf{S}_i
de norme uni

Lattice model (physics)

In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice mod

Unités associées (2)

Cours associés (3)

PHYS-441: Statistical physics of biomacromolecules

Introduction to the application of the notions and methods of theoretical physics to problems in biology.

BIO-369: Randomness and information in biological data

Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to understand biological processes in a quantitative way.

MATH-517: Statistical computation and visualisation

The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice proposing efficient solutions, and effectively communicating the results with stakeholders.

We investigate the relationship between the N-clock model (also known as planar Potts model or DOUBLE-STRUCK CAPITAL ZN-model) and the XY model (at zero temperature) through a Gamma-convergence analysis of a suitable rescaling of the energy as both the number of particles and N diverge. We prove the existence of rates of divergence of N for which the continuum limits of the two models differ. With the aid of Cartesian currents we show that the asymptotics of the N-clock model in this regime features an energy that may concentrate on geometric objects of various dimensions. This energy prevails over the usual vortex-vortex interaction energy. (c) 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.

We discuss walking behavior in gauge theories and weak first-order phase transitions in statistical physics. Despite appearing in very different systems (QCD below the conformal window, the Potts model, deconfined criticality) these two phenomena both imply approximate scale invariance in a range of energies and have the same RG interpretation: a flow passing between pairs of fixed point at complex coupling. We discuss what distinguishes a real theory from a complex theory and call these fixed points complex CFTs. By using conformal perturbation theory we show how observables of the walking theory are computable by perturbing the complex CFTs. This paper discusses the general mechanism while a companion paper [1] will treat a specific and computable example: the two-dimensional Q-state Potts model with Q > 4. Concerning walking in 4d gauge theories, we also comment on the (un)likelihood of the light pseudo-dilaton, and on non-minimal scenarios of the conformal window termination.

We study complex CFTs describing fixed points of the two-dimensional Q-state Potts model with Q > 4. Their existence is closely related to the weak first-order phase transition and the "walking" renormalization group (RG) behavior present in the real Potts model at Q > 4. The Potts model, apart from its own significance, serves as an ideal playground for testing this very general relation. Cluster formulation provides nonperturbative definition for a continuous range of parameter Q, while Coulomb gas description and connection to minimal models provide some conformal data of the complex CFTs. We use one and two-loop conformal perturbation theory around complex CFTs to compute various properties of the real walking RG flow. These properties, such as drifting scaling dimensions, appear to be common features of the QFTs with walking RG flows, and can serve as a smoking gun for detecting walking in Monte Carlo simulations. The complex CFTs discussed in this work are perfectly well defined, and can in principle be seen in Monte Carlo simulations with complexified coupling constants. In particular, we predict a pair of S-5-symmetric complex CFTs with central charges c approximate to 1.138 +/- 0.021i describing the fixed points of a 5-state dilute Potts model with complexified temperature and vacancy fugacity. Copyright V. Gorbenko et al.

2018Séances de cours associées (5)