En apprentissage automatique, la couverture de Markov pour un nœud d'un réseau bayésien est l'ensemble des nœuds composés des parents de , de ses enfants et des parents de ses enfants. Dans un réseau de Markov, la couverture de Markov d'un nœud est l'ensemble de ses nœuds voisins. La couverture de Markov peut également être désignée par . Chaque ensemble de nœuds dans le réseau est conditionnellement indépendant de lorsqu'il est conditionné sur l'ensemble , c'est-à-dire lorsqu'elle est déterminée sur la couverture de Markov du nœud . La probabilité a la propriété de Markov ; formellement, pour des nœuds distincts et : La couverture de Markov d'un nœud contient toutes les variables qui bloquent le nœud du reste du réseau. Cela signifie que la couverture de Markov d'un nœud est la seule connaissance nécessaire pour prédire le comportement de ce nœud. Le terme a été inventé par Pearl en 1988. Dans un réseau bayésien, les valeurs des parents et des enfants d'un nœud donnent des informations sur ce nœud, mais les parents de ses enfants doivent également être inclus, car ils peuvent être utilisés pour expliquer le nœud en question.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (22)
Concepts associés (3)
Champ aléatoire de Markov
Un champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Propriété de Markov
vignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Chaîne de Markov
vignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.