Interaction électrofaibleL’interaction électrofaible, aussi appelée force électrofaible, est la description unifiée de deux des quatre interactions fondamentales de l'univers, à savoir l'électromagnétisme (appelé électrodynamique quantique dans sa version quantique) et l'interaction faible. Ces deux forces paraissent pourtant très différentes aux échelles d'énergie atomique, et même nucléaire : la force électromagnétique est dite de portée infinie car on peut l'observer aisément à l'échelle macroscopique tandis que la force faible a une influence uniquement à l'échelle microscopique, au niveau du noyau atomique.
Interaction de YukawaEn physique des particules, l'interaction de Yukawa est une interaction entre un champ scalaire φ et un champ de Dirac ψ de type : (scalaire) ou (pseudoscalaire). Cette interaction porte le nom du physicien japonais Hideki Yukawa. Cette interaction s'effectue entre les nucléons d'un atome et permet de maintenir le noyau atomique en place. Cette interaction consiste pour les nucléons de s'échanger des pion (particule) qui peuvent transformer des neutrons en protons et vice-versa.
Chiral anomalyIn theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation").
ChiralitéLa chiralité (du grec χείρ, kheir : main) est une importante propriété reliant les notions de symétrie et d'orientation, intervenant dans diverses branches de la science. Un objet ou un système est appelé chiral s’il n'est pas superposable à son image dans un miroir. Cet objet et son image miroir constituent alors deux formes différentes qualifiées d'énantiomorphes (du grec formes opposées) ou, en se référant à des molécules, des conformations spatiales « gauches » et « droites » appelées énantiomères dotés d'une asymétrie moléculaire tridimensionnelle.
Mécanisme de see-sawLe mécanisme de see-saw, mécanisme de la balancoire ou mécanisme à bascule, en théorie quantique des champs, permet de générer de très petits nombres à partir de nombres « raisonnables » et de grands nombres. Ce mécanisme apparaît notamment dans les théories de grande unification, et en particulier pour expliquer les masses des neutrinos et leur oscillation. Ce modèle produit un neutrino léger, pour chacune des trois saveurs de neutrinos connues, et un neutrino stérile, très lourd et encore non découvert.
Particule de DiracOn appelle particule de Dirac toute particule de type fermion dont l'antiparticule est différente. C'est le cas de toute particule chargée (un électron et son positron par exemple). Elles sont nommées ainsi en raison de la mise en évidence par Paul Dirac en 1928 de l'existence du positron. D'autres particules de charge nulle (telles les neutrinos) seraient en revanche susceptibles d'être leur propre antiparticule : il s'agirait alors de particules dites de Majorana, dont l'existence n'a toujours pas été confirmée à mi-2016.
Chiral modelIn nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N) , where N is the number of quark flavors.
BispinorIn physics, and specifically in quantum field theory, a bispinor is a mathematical construction that is used to describe some of the fundamental particles of nature, including quarks and electrons. It is a specific embodiment of a spinor, specifically constructed so that it is consistent with the requirements of special relativity. Bispinors transform in a certain "spinorial" fashion under the action of the Lorentz group, which describes the symmetries of Minkowski spacetime.
Neutral currentWeak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons. The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with neutrinos.
Gauge anomalyIn theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory. All gauge anomalies must cancel out. Anomalies in gauge symmetries lead to an inconsistency, since a gauge symmetry is required in order to cancel degrees of freedom with a negative norm which are unphysical (such as a photon polarized in the time direction). Indeed, cancellation occurs in the Standard Model.